

Chapter 20

Async and file I/O

Graphical user interfaces have a little peculiarity that has far-reaching consequences: User input to an

application must be processed sequentially. Regardless of whether user-input events come from a key-

board, a mouse, or touch, each event must be completely processed by an application—either directly

or through user-interface objects such as buttons or sliders—before the application obtains the next

user-input event from the operating system.

The rationale behind this restriction becomes clear after a little reflection and perhaps an example:

Suppose a page contains two buttons, and the user quickly taps one and then the other. Might it be

possible for the two buttons to process those two taps concurrently in two separate threads of execu-

tion? No, that would not work. It could be that the first button changes the meaning of the second

button, perhaps disabling it entirely. For this reason, the first button must be allowed to completely

finish processing its tap before the second button begins processing its own tap.

The consequences of this restriction are severe: All user input to a particular application must be

processed in a single thread of execution. Moreover, user-interface objects are generally not thread-

safe. They cannot be modified from a secondary thread of execution. All code connected with an appli-

cation’s user interface is therefore restricted to a single thread. This thread is known as the main thread

or the user-interface thread or the UI thread.

As we users have become more accustomed to graphical user interfaces over the decades, we’ve

become increasingly intolerant of even the slightest lapse in responsiveness. As application program-

mers, we therefore try our best to keep the user interface responsive to achieve maximum user satisfac-

tion. This means that anything running on the UI thread must perform its processing as quickly as pos-

sible and return control back to the operating system. If an event handler running in the UI thread gets

bogged down in a long processing job, the entire user interface will seem to freeze and certainly annoy

the user.

For this reason, any lengthy jobs that an application must perform should be relegated to secondary

threads of execution, often called worker threads. These worker threads are said to run “in the back-

ground” and do not interfere with the responsiveness of the UI thread.

You’ve already seen some examples in this book. Several sample programs—the ImageBrowser

and BitmapStreams programs in Chapter 13, “Bitmaps,” and the SchoolOfFineArt library and

RssFeed program in Chapter 19, “Collection views”—use the WebRequest class to download files over

the Internet. A call to the BeginGetResponse method of WebRequest starts a worker thread that ac-

cesses the web resource asynchronously. The WebRequest call returns quickly, and the program can

handle other user input while the file is being downloaded. An argument to BeginGetResponse is a

callback method that is invoked when the background process completes. Within this callback method

the program calls EndGetResponse to get access to the downloaded data.

Chapter 20 Async and file I/O 625

But the callback method passed to BeginGetResponse has a little problem. The callback method

runs in the same worker thread that downloads the file, and in the general case, you can’t access user-

interface objects from anything other than the UI thread. Usually, this means that the callback method

must access the UI thread. Each of the three platforms supported by Xamarin.Forms has its own native

method for running code from a secondary thread on the UI thread, but in Xamarin.Forms these are all

available through the Device.BeginInvokeOnMainThread method. (As you’ll recall, however, there

are some exceptions generally related to ViewModels: Although a secondary thread can’t access a

user-interface object directly, the secondary thread can set a property that is bound to a user-interface

object through a data binding.)

In recent years, asynchronous processing has become more ubiquitous at the same time that it’s

become easier for programmers. This is an ongoing trend: The future of computing will undoubtedly

involve a lot more asynchronous computing and parallel processing, particularly with the increasing

use of multicore processor chips. Developers will need good operating-system support and language

tools to work with asynchronous operations, and fortunately .NET and C# have been in the forefront of

this support.

This chapter will explore some of the basics of working with asynchronous processing in Xama-

rin.Forms applications, including using the .NET Task class to help you define and work with asynchro-

nous methods. The customary hassle of dealing with callback functions has been alleviated greatly with

two keywords introduced in C# 5.0: async and await. The await operator has revolutionized asyn-

chronous programming by simplifying the syntax of asynchronous calls, by clarifying program flow sur-

rounding asynchronous calls, by easing the access of user-interface objects, by simplifying the handling

of exceptions raised by worker threads, and by unifying the handling of these exceptions and cancella-

tions of background jobs.

This chapter primarily demonstrates how to work with asynchronous processing to perform file in-

put and output, and how to create your own worker threads for performing lengthy jobs.

But Xamarin.Forms itself contains several asynchronous methods.

From callbacks to await

The Page class defines three methods that let you display a visual object sometimes called an alert or a

message box. Such a box pops up on the screen with some information or a question for the user. The

alert box is modal, meaning that the rest of the application is unavailable while the alert is displayed.

The user must dismiss it with the press of a button before returning to interact with the application.

Two of these three methods of the Page class are named DisplayAlert. The first simply displays

some text with a single button to dismiss the box, while the second contains two buttons for yes or no

responses. The DisplayActionSheet method is similar but displays any number of buttons.

In iOS, Android, and the Windows Runtime, these methods are implemented with platform-specific

Chapter 20 Async and file I/O 626

objects that use events or callback methods to inform the application that the alert box has been dis-

missed and what button the user pressed to dismiss it. However, Xamarin.Forms has wrapped these ob-

jects with an asynchronous interface.

These three methods of the Page class are defined like this:

Task DisplayAlert (string title, string message, string cancel)

Task<bool> DisplayAlert (string title, string message, string accept, string cancel)

Task<string> DisplayActionSheet (string title, string cancel, string destruction,

 params string[] buttons)

They all return Task objects. The Task and Task<T> classes are defined in the System.Thread-

ing.Tasks namespace and they form the core of the Task-based Asynchronous Pattern, known as

TAP. TAP is the recommended approach to handling asynchronous operations in .NET. The Task Paral-

lel Library (TPL) builds on TAP.

In contrast, the BeginGetResponse and EndGetResponse methods of WebRequest represent an

older approach to asynchronous operations involving IAsyncResult. This older approach is called the

Asynchronous Programming Model or APM. You might also encounter code that uses the Event-based

Asynchronous Model (EAP) to return information from asynchronous jobs through events.

You’ve already seen the simplest form of DisplayAlert in the SetTimer program in Chapter 15,

“The interactive interface.” SetTimer used an alert to indicate when a timer elapsed. The program

didn’t seem to care that DisplayAlert returned a Task object because the alert box was used strictly

for notification purposes. It was not necessary to obtain a response from the user. However, the meth-

ods that return Task<bool> and Task<string> need to convey actual information back to the appli-

cation indicating which button the user pressed to dismiss the alert.

A return value of Task<T> is sometimes referred to as a “promise.” The actual value or object isn’t

available just yet, but it will be available in the future if nothing goes awry.

You can work with a Task<T> object in a few different ways. These approaches are fundamentally

equivalent, but the C# syntax is quite different.

An alert with callbacks

The intended use of the DisplayAlert method that returns a Task<bool> is to ask the user a ques-

tion with a yes or no answer. Obviously the answer isn’t available until the user presses a button and

the alert is dismissed, at which time a true value means Yes and false value means No.

One way to work with a Task<T> object is with callback methods. The AlertCallbacks program

demonstrates that approach. It has a XAML file with a Button to invoke an alert and a Label for the

program to display some information:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="AlertCallbacks.AlertCallbacksPage">

Chapter 20 Async and file I/O 627

 <StackLayout>

 <Button Text="Invoke Alert"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 Clicked="OnButtonClicked" />

 <Label x:Name="label"

 Text="Tap button to invoke alert"

 FontSize="Large"

 HorizontalTextAlignment="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

</ContentPage>

Here’s the code-behind file with the Clicked event handler and two callback methods:

public partial class AlertCallbacksPage : ContentPage

{

 bool result;

 public AlertCallbacksPage()

 {

 InitializeComponent();

 }

 void OnButtonClicked(object sender, EventArgs args)

 {

 Task<bool> task = DisplayAlert("Simple Alert", "Decide on an option",

 "yes or ok", "no or cancel");

 task.ContinueWith(AlertDismissedCallback);

 label.Text = "Alert is currently displayed";

 }

 void AlertDismissedCallback(Task<bool> task)

 {

 result = task.Result;

 Device.BeginInvokeOnMainThread(DisplayResultCallback);

 }

 void DisplayResultCallback()

 {

 label.Text = String.Format("Alert {0} button was pressed",

 result ? "OK" : "Cancel");

 }

}

The Clicked handler calls DisplayAlert with arguments indicating a title, a question or state-

ment, and the text for the two buttons. Generally, these two buttons are labeled “yes” and “no,” or “ok”

and “cancel,” but you can put anything you want in those buttons as this program demonstrates.

If DisplayAlert were designed to be a synchronous method, the method would return a bool

indicating which button the user pressed to dismiss the alert. However, DisplayAlert would not be

Chapter 20 Async and file I/O 628

able to return that value until the alert were dismissed, which means that the application would be

stuck in the DisplayAlert call during the entire time the alert is displayed. Depending on how the

operating system handles user-input events, being stuck in the DisplayAlert call might not actually

block other event handling by the user-interface thread during this time, but it might be a little strange

for the UI thread to be seemingly in the DisplayAlert call while also handling other events.

Instead of returning a bool when the alert is dismissed, DisplayAlert returns a Task<bool> ob-

ject that promises a bool result sometime in the future. To obtain that value, the OnButtonClicked

handler in the AlertCallbacks program calls the ContinueWith method defined by Task. This

method allows the program to specify a method that is called when the alert is dismissed. The

Clicked handler concludes by setting some text to the Label, and then returns control back to the

operating system.

The alert is then displayed:

Of course, the alert essentially disables the user interface of the application, but the application

could still be doing some work while the alert is displayed. For example, the program could be using a

timer, and that timer would continue to run. You can prove this to yourself by adding the following

code to the constructor of the AlertCallbacks code-behind file:

Device.StartTimer(TimeSpan.FromSeconds(1), () =>

 {

 label.Text = DateTime.Now.ToString();

 return true;

 });

When the user dismisses the alert by tapping one of the buttons, the AlertDismissedCallback

method is called:

Chapter 20 Async and file I/O 629

void AlertDismissedCallback(Task<bool> task)

{

 result = task.Result;

 Device.BeginInvokeOnMainThread(DisplayResultCallback);

}

The argument is the same Task object originally returned from the DisplayAlert method. But now

the Result property of the Task object has been set to true or false depending on what button the

user pressed to dismiss the alert. The program wants to display that value, but unfortunately it cannot

because this AlertDismissedCallback method is running in a secondary thread that Xamarin.Forms

has created. This thread is not allowed to access any user-interface objects of the program. For that

reason, the AlertDismissedCallback method saves the bool result in a field and calls Device-

.BeginInvokeOnMainThread with a second callback method. That callback method runs in the UI

thread:

void DisplayResultCallback()

{

 label.Text = String.Format("Alert {0} button was pressed",

 result ? "OK" : "Cancel");

}

The Label then displays that text:

The AlertCallbacks program demonstrates one traditional way to handle asynchronous methods,

but it has a distinct drawback: There are simply too many callbacks, and in one case, data must be

passed from one callback to another by using a field.

Chapter 20 Async and file I/O 630

An alert with lambdas

An obvious approach to simplify callbacks is with lambda functions. This is demonstrated with the

AlertLambdas program. The XAML file is the same as in the AlertCallbacks method, but everything

that happens in response to the button click is now inside that Clicked handler:

public partial class AlertLambdasPage : ContentPage

{

 public AlertLambdasPage()

 {

 InitializeComponent();

 }

 void OnButtonClicked(object sender, EventArgs args)

 {

 Task<bool> task = DisplayAlert("Simple Alert", "Decide on an option",

 "yes or ok", "no or cancel");

 task.ContinueWith((Task<bool> taskResult) =>

 {

 Device.BeginInvokeOnMainThread(() =>

 {

 label.Text = String.Format("Alert {0} button was pressed",

 taskResult.Result ? "OK" : "Cancel");

 });

 });

 label.Text = "Alert is currently displayed";

 }

}

There is really no difference between this program and the previous one except that the callback

methods have no name. They are anonymous. But sometimes lambda functions have the tendency to

obscure program flow, and that is certainly the case here. The Text property of the Label is set to the

text “Alert is currently displayed” right after the ContinueWith method is called and before the

callback passed to ContinueWith executes, but that statement appears at the bottom of the method.

There should be a better way to denote what you want to happen without distorting program flow.

That better way is called await.

An alert with await

The AlertAwait program has the same XAML file as AlertCallbacks and AlertLambdas, but the

OnButtonClicked method is considerably simplified:

public partial class AlertAwaitPage : ContentPage

{

 public AlertAwaitPage()

 {

 InitializeComponent();

 }

 async void OnButtonClicked(object sender, EventArgs args)

 {

Chapter 20 Async and file I/O 631

 Task<bool> task = DisplayAlert("Simple Alert", "Decide on an option",

 "yes or ok", "no or cancel");

 label.Text = "Alert is currently displayed";

 bool result = await task;

 label.Text = String.Format("Alert {0} button was pressed",

 result ? "OK" : "Cancel");

 }

}

The key statement is this one:

bool result = await task;

That task variable is the Task<bool> object returned from DisplayAlert, but the await keyword

seems to magically extract the Boolean result without any callbacks or lambdas.

The first thing you should know is that await doesn’t actually wait for the alert to be dismissed! In-

stead, the C# compiler has performed a lot of surgery on the OnButtonClicked method. The method

has basically been turned into a state machine. Part of the method is executed when the button is

clicked, and part of the method is executed later. When the flow of execution hits the await keyword,

the remainder of the OnButtonClicked method is skipped over for the moment. The OnButton-

Clicked method exits and returns control back to the operating system. From the perspective of the

Button, the event handler has completed.

When the user dismisses the alert box, the remainder of the OnButtonClicked method resumes

execution beginning with the assignment of the Boolean value to the result variable. In some cir-

cumstances, some optimizations can take place behind the scenes. For example, the flow of execution

can just continue normally if the asynchronous operation completes immediately.

The await operator has another bonus: Notice that there’s no use of Device.BeginInvokeOn-

MainThead. When the user dismisses the alert, the OnButtonClicked method automatically resumes

execution in the user-interface thread, which means that it can access the Label. (In some cases, you

might want to continue running in the background thread for performance reasons. If so, you can use

the ConfigureAwait method of Task to do that. You’ll see an example later in this chapter.)

The await keyword essentially converts asynchronous code into something that appears to be nor-

mal sequential imperative code. Of course, behind the scenes, there is really not much difference be-

tween this program and the two previous programs. In all three cases, the OnButtonClicked handler

returns control back to the operating system when it displays the alert, and resumes execution when

the alert is dismissed.

Simply for illustrative purposes, the three programs display some text immediately after the Dis-

playAlert method is called. If that isn’t necessary, then the DisplayAlert call can be combined with

the await operator to get rid of the explicit Task<bool> variable entirely:

bool result = await DisplayAlert("Simple Alert", "Decide on an option",

 "yes or ok", "no or cancel");

Chapter 20 Async and file I/O 632

This is how await commonly appears in code. DisplayAlert returns Task<bool> but the await op-

erator effectively extracts the bool result after the background task has completed.

Indeed, you can use await much like you can any other operator, and it can appear inside a more

complex expression. For example, if you don’t need the statement that displays the text after the Dis-

playAlert call, you can actually put both the await operator and DisplayAlert inside the final

String.Format call:

async void OnButtonClicked(object sender, EventArgs args)

{

 label.Text = String.Format("Alert {0} button was pressed",

 await DisplayAlert("Simple Alert", "Decide on an option",

 "yes or ok", "no or cancel") ? "OK" : "Cancel");

}

That might be a little difficult to read, but think of the combination of the await operator and the

DisplayAlert method as a bool and the statement makes perfect sense.

You might have noticed that the OnButtonClicked method is marked with the async keyword.

Any method in which you use await must be marked as async. However, the async keyword does

not change the signature of the method. OnButtonClicked still qualifies as an event handler for the

Clicked event.

But not every method can be an async method.

An alert with nothing

The simpler of the two DisplayAlert methods returns a Task object. It is intended to display some

information to the user that doesn’t require a response:

Task DisplayAlert (string title, string message, string cancel)

Generally, you’ll want to use await with this simpler DisplayAlert method even though it doesn’t

return any information, and particularly if you need to perform some processing after it has been dis-

missed. The NothingAlert program has the same XAML file as the previous samples but displays this

simpler alert box:

public partial class NothingAlertPage : ContentPage

{

 public NothingAlertPage()

 {

 InitializeComponent();

 }

 async void OnButtonClicked(object sender, EventArgs args)

 {

 label.Text = "Displaying alert box";

 await DisplayAlert("Simple Alert", "Click 'dismiss' to dismiss", "dismiss");

 label.Text = "Alert has been dismissed";

 }

}

Chapter 20 Async and file I/O 633

Nothing appears to the left of the await operator because the return value of DisplayAlert is Task

rather than Task<T> and no information is returned.

The first program in this book that used this simpler form of DisplayAlert was the SetTimer pro-

gram in Chapter 15. Here’s the timer callback method from that program (with the oddly named

@switch variable so that it doesn’t conflict with the switch keyword):

bool OnTimerTick()

{

 if (@switch.IsToggled && DateTime.Now >= triggerTime)

 {

 @switch.IsToggled = false;

 DisplayAlert("Timer Alert",

 "The '" + entry.Text + "' timer has elapsed",

 "OK");

 }

 return true;

}

The DisplayAlert call returns quickly, and the method continues to execute when the alert box is

displayed. The OnTimerTick method then returns true, and a second later OnTimerTick is called

again. Fortunately, the Switch is no longer toggled, so the program doesn’t attempt to call Display-

Alert a second time. When the alert is dismissed, the user can again interact with the user interface,

but no additional code is executed on its return.

What if you wanted to execute a little code after the alert box was dismissed? Try to put an await

operator in front of DisplayAlert and identify the method with the async keyword:

// Will not compile!

async bool OnTimerTick()

{

 if (@switch.IsToggled && DateTime.Now >= triggerTime)

 {

 @switch.IsToggled = false;

 await DisplayAlert("Timer Alert",

 "The '" + entry.Text + "' timer has elapsed",

 "OK");

 // Some code to execute after the alert box is dismissed.

 }

 return true;

}

But as the comment says, this code will not compile.

Why not?

When the C# compiler encounters the await keyword, it constructs code so that the OnTimerTick

callback returns to its caller. The remainder of the method then resumes execution when the alert box

is dismissed. However, the Device.StartTimer method that invokes this callback is expecting the

timer callback to return a Boolean value to determine whether it should call the callback again, and the

C# compiler cannot construct code that returns a Boolean value because it doesn’t know what that

Chapter 20 Async and file I/O 634

Boolean value should be!

For this reason, methods that contain await operators are restricted to return types of void, Task,

or Task<T>.

Event handlers usually have void return types. This is why the Clicked handler of a Button can

contain await operators and be flagged with the async keyword. But the timer callback method re-

turns a bool, and to use await within this method, the return value of the OnTimerTick method

must be Task<bool>:

// Method compiles but Device.StartTimer does not!

async Task<bool> OnTimerTick()

{

 if (@switch.IsToggled && DateTime.Now >= triggerTime)

 {

 @switch.IsToggled = false;

 await DisplayAlert("Timer Alert",

 "The '" + entry.Text + "' timer has elapsed",

 "OK");

 }

 return true;

}

This method now contains entirely legal compilable code. When a method is defined to return

Task<T>, the body of the method returns an object of type T and the compiler does the rest.

However, because the method now returns a Task<bool> object, code that calls this method must

use await with the method (or call ContinueWith on the Task object) to obtain the Boolean value

when the method completes execution. That’s a problem for the Device.StartTimer call, which is

not expecting the callback method to be asynchronous; it’s expecting the callback method to return

bool rather than Task<bool>.

If you really did want to execute some code after the alert is dismissed in the SetTimer program,

you should use ContinueWith for that code. The await operator is very useful, but it is not a panacea

for every asynchronous programming problem.

The await operator can only be used in a method, and the method must have a return type of

void, Task, or Task<T>. That’s it. The get accessors of properties cannot use await, and they

shouldn’t be performing asynchronous operations anyway. Constructors cannot use await because

constructors are not methods and have no return type. You cannot use await in the body of a lock

statement. C# 5 also prohibits using await in the catch or finally blocks of a try-catch-finally

statement, but C# 6 lifts that restriction.

These restrictions turn out to be most severe for constructors. A constructor should complete

promptly because nothing can really be done with an instance of a class until the constructor finishes.

Although a constructor can call an asynchronous method that returns Task, the constructor can’t use

await with that call. The constructor finishes while the asynchronous method is still processing. (You’ll

see some examples in this chapter and the next.)

Chapter 20 Async and file I/O 635

A constructor cannot call an asynchronous method that returns a value required by the constructor

to complete. If a constructor needs to obtain an object from an asynchronous operation, it can use

ContinueWith, in which case the constructor will finish before the object from the asynchronous op-

eration is available. But that’s unavoidable.

Saving program settings asynchronously
As you discovered in Chapter 6, “Button clicks,” you can save program settings in a dictionary named

Properties maintained by the Application class. Anything you put in the Properties dictionary is

saved when the program goes into a sleep state and is restored when the program resumes or starts

up again. Sometimes it’s convenient to save settings in this dictionary as they are changed, and some-

times it’s convenient to wait until the OnSleep method is called in your App class.

There’s also another option: The Application class has a method named SavePropertiesAsync

that lets your program take a more proactive role in saving program settings. This allows a program to

save program settings whenever it wants to. If the program later crashes or is terminated through the

Visual Studio or Xamarin Studio debugger, the settings are saved.

In conformance with recommended practice, the Async suffix on the SavePropertiesAsync

method name identifies this as an asynchronous method. It returns quickly with a Task object and

saves the settings in a secondary thread of execution.

A program named SaveProgramSettings demonstrates this technique. The XAML file contains four

Switch views and four Label views that treat the Switch views as digits of a binary number:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="SaveProgramSettings.SaveProgramSettingsPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <toolkit:BoolToStringConverter x:Key="boolToString"

 FalseText="Zero"

 TrueText="One" />

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 </Style>

 <Style TargetType="Switch">

 <Setter Property="HorizontalOptions" Value="Center" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout>

 <Grid VerticalOptions="CenterAndExpand">

 <Label Text="{Binding Source={x:Reference s3},

Chapter 20 Async and file I/O 636

 Path=IsToggled,

 Converter={StaticResource boolToString}"

 Grid.Column="0" />

 <Label Text="{Binding Source={x:Reference s2},

 Path=IsToggled,

 Converter={StaticResource boolToString}"

 Grid.Column="1" />

 <Label Text="{Binding Source={x:Reference s1},

 Path=IsToggled,

 Converter={StaticResource boolToString}"

 Grid.Column="2" />

 <Label Text="{Binding Source={x:Reference s0},

 Path=IsToggled,

 Converter={StaticResource boolToString}"

 Grid.Column="3" />

 </Grid>

 <Grid x:Name="switchGrid"

 VerticalOptions="CenterAndExpand">

 <Switch x:Name="s3" Grid.Column="0"

 Toggled="OnSwitchToggled" />

 <Switch x:Name="s2" Grid.Column="1"

 Toggled="OnSwitchToggled" />

 <Switch x:Name="s1" Grid.Column="2"

 Toggled="OnSwitchToggled" />

 <Switch x:Name="s0" Grid.Column="3"

 Toggled="OnSwitchToggled" />

 </Grid>

 </StackLayout>

</ContentPage>

The data bindings on the Label elements allow them to track the values of the Switch views:

Chapter 20 Async and file I/O 637

The saving and retrieving of program settings is handled in the code-behind file. Notice the handler

assigned to the Toggled events of the Switch elements. The sole purpose of that handler is to store

the settings in the Properties dictionary—and to save the Properties dictionary itself by using

SavePropertiesAsync—whenever one of the Switch elements changes state. The dictionary key is

the index of the Switch within the Children collection of the Grid:

public partial class SaveProgramSettingsPage : ContentPage

{

 bool isInitialized = false;

 public SaveProgramSettingsPage()

 {

 InitializeComponent();

 // Retrieve settings.

 IDictionary<string, object> properties = Application.Current.Properties;

 for (int index = 0; index < 4; index++)

 {

 Switch switcher = (Switch)(switchGrid.Children[index]);

 string key = index.ToString();

 if (properties.ContainsKey(key))

 switcher.IsToggled = (bool)(properties[key]);

 }

 isInitialized = true;

 }

 async void OnSwitchToggled(object sender, EventArgs args)

 {

 if (!isInitialized)

Chapter 20 Async and file I/O 638

 return;

 Switch switcher = (Switch)sender;

 string key = switchGrid.Children.IndexOf(switcher).ToString();

 Application.Current.Properties[key] = switcher.IsToggled;

 // Save settings.

 foreach (View view in switchGrid.Children)

 view.IsEnabled = false;

 await Application.Current.SavePropertiesAsync();

 foreach (View view in switchGrid.Children)

 view.IsEnabled = true;

 }

}

One of the purposes of this exercise is to emphasize first, that using await doesn’t completely solve

problems involved with asynchronous operations, but second, that using await can help deal with

those potential problems.

Here’s the problem: The Toggled event handler is called every time a Switch changes state. It

could be that a user toggles a couple of the Switch views in succession very quickly. And it could also

be the case that the SavePropertiesAsync method is slow. Perhaps it saves much more information

than four Boolean values. Because this method is asynchronous, there is a danger that it could be

called again while it’s still working to save the previous collection of settings.

Is SavePropertiesAsync reentrant? Can it safely be called again while it’s still working? We don’t

know, and it’s better to assume that it’s not. For that reason, the handler disables all the Switch ele-

ments before calling SavePropertiesAsync and then reenables them after it’s finished. Because

SavePropertiesAsync returns Task rather than Task<T>, it’s not necessary to use await (or Con-

tinueWith) to get a value from the method, but it is necessary if you want to execute some code after

the method has completed.

In reality, SavePropertiesAsync works so fast in this case that it’s hard to tell whether this disa-

bling and enabling of the Switch views is even working! For testing code such as this, a static method

of the Task class is very useful. Try inserting this statement right after the SavePropertiesAsync call:

await Task.Delay(3000);

The Switch elements are disabled for another 3,000 milliseconds. Of course, if an asynchronous opera-

tion really took this long to complete and the user interface is disabled during this time, you’d want to

display an ActivityIndicator or a ProgressBar if possible.

The Task.Delay method might seem reminiscent of the Thread.Sleep method that you possibly

used in some .NET code many years ago. But the two static methods are very different. The

Thread.Sleep method suspends the current thread, which in this case would be the user-interface

thread. That’s precisely what you don’t want. The Task.Delay call, however, simulates a do-nothing

secondary thread that runs for a specified period of time. The user-interface thread isn’t blocked. If you

Chapter 20 Async and file I/O 639

omit the await operator, Task.Delay would seemingly have no effect on the program at all. When

used with the await operator, the code in the method that calls Task.Delay resumes after the speci-

fied period of time.

A platform-independent timer
So far in this book you’ve seen two ViewModels that have required timers: These are the DateTime-

ViewModel class used in the MvvmClock program in Chapter 18, “MVVM,” and the SchoolViewModel

class in the SchoolOfFineArt library, which used the timer to randomly alter the students’ grade-point

averages for several programs in Chapter 19, “Collection views.”

These ViewModels used Device.StartTimer, but that’s not a good practice. A ViewModel is sup-

posed to be platform independent and usable in any .NET application, but Device.StartTimer is

specific to Xamarin.Forms.

You can alternatively create your own timer by using Task.Delay. Because Task.Delay is part of

.NET and can be used within Portable Class Libraries, it is much more platform independent than De-

vice.StartTimer.

The TaskDelayClock demonstrates how to use Task.Delay for a timer. The XAML file consists of a

Label in an AbsoluteLayout:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="TaskDelayClock.TaskDelayClockPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <AbsoluteLayout>

 <Label x:Name="label"

 FontSize="Large"

 AbsoluteLayout.LayoutFlags="PositionProportional" />

 </AbsoluteLayout>

</ContentPage>

The code-behind file contains a method called InfiniteLoop. Generally, infinite loops are avoided

in programming, but this one runs in the user-interface thread for only a very brief period of time four

times per second. For the bulk of the time, a Task.Delay call allows the user-interface thread to con-

tinue to interact with the user:

public partial class TaskDelayClockPage : ContentPage

{

 Random random = new Random();

 public TaskDelayClockPage()

 {

 InitializeComponent();

Chapter 20 Async and file I/O 640

 InfiniteLoop();

 }

 async void InfiniteLoop()

 {

 while (true)

 {

 label.Text = DateTime.Now.ToString("T");

 label.FontSize = random.Next(12, 49);

 AbsoluteLayout.SetLayoutBounds(label, new Rectangle(random.NextDouble(),

 random.NextDouble(),

 AbsoluteLayout.AutoSize,

 AbsoluteLayout.AutoSize));

 await Task.Delay(250);

 }

 }

}

Every 250 milliseconds, the code in the while loop runs to give the Label the current time, but

also to randomly change its font size and its location within the AbsoluteLayout:

Yes, it’s a rather annoying clock.

This is not truly an “infinite” loop, of course, but it will keep going until the application terminates. If

you prefer, you can use a Boolean field as the while conditional and exit from the loop by just setting

the field to false.

Notice how the InfiniteLoop method is simply called from the constructor as if it were a normal

method. If this method used Thread.Sleep rather than Task.Delay, it would never return back to

Chapter 20 Async and file I/O 641

the constructor, and the constructor would never finish, and that would not be good at all. This partic-

ular InfiniteLoop method returns back to the constructor when execution hits the await operator

for the first time, and the constructor can finish execution. The program can do anything else it wants,

but the user-interface thread will be required every 250 milliseconds when InfiniteLoop resumes.

Although the Task.Delay call simulates a do-nothing secondary thread, it’s actually implemented

using the Timer class from the System.Threading namespace. Curiously enough, that Timer class is

not available in a Xamarin.Forms Portable Class Library, and if it were, it would be a little more difficult

to use because the timer callback doesn’t run in the user-interface thread.

File input/output

Traditionally, file input/output is one of the most basic programming tasks, but file I/O on mobile de-

vices is a little different from that on the desktop. On the desktop, users and applications generally

have access to an entire disk and perhaps additional drives, all of which are organized into directory

structures. On mobile devices, several standard folders exist—for pictures or music, for example—but

application-specific data is generally restricted to a storage area that is private to each application.

Programmers familiar with .NET know that the System.IO namespace contains the bulk of stand-

ard file I/O support. This is where you’ll find the crucial Stream class that provides the basis of reading

and writing data organized as a stream of bytes. Building upon this are several Reader and Writer

classes and other classes that allow accessing files and directories. Perhaps the handiest of the file clas-

ses is File itself, which not only provides a collection of methods to create new files and open existing

files but also includes several static methods capable of performing an entire file-read or file-write op-

eration in a single method call.

Particularly if you’re working with text files, these static methods of the File class can be very con-

venient. For example, the File.WriteAllText method has two arguments of type string—a file-

name and the file contents. The method creates the file (replacing an existing file with the same name

if necessary), writes the contents to the file, and then closes it. The File.ReadAllText method is sim-

ilar but returns the contents of the file in one big string object. These methods are ideal for writing

and reading text files with a minimum of fuss.

At first, file I/O doesn’t seem to require asynchronous operations, and in practice, sometimes you

have a choice, and sometimes you can avoid asynchronous operations if you want to.

However, other times you do not have a choice. Some platforms require asynchronous functions for

file I/O, and even when they’re not required, it makes sense to avoid doing file I/O in the user-interface

thread.

Good news and bad news
The Xamarin.iOS and Xamarin.Android libraries referenced by your Xamarin.Forms applications include

Chapter 20 Async and file I/O 642

a version of .NET that Xamarin has expressly tailored for these two mobile platforms. The methods in

the File class in the System.IO namespace map to appropriate file I/O functions in the iOS and An-

droid platforms, and the static Environment.GetFolderPath method, when used with the MyDocu-

ments enumeration member, returns a directory for the application’s local storage. This means that

you can use simple methods in the File class—including the static methods that perform entire file

writing or reading operations in a single call—in your iOS and Android applications.

To verify the availability of these classes, let’s experiment a little: Go into Visual Studio or Xamarin

Studio and load any Xamarin.Forms solution created so far. Bring up one of the code files in the iOS or

Android project. In a constructor or method, type the System.IO namespace name and then a period.

You’ll get a list of all the available types in the namespace. If you then type File and a period, you’ll

get all the static methods in the File class, including WriteAllText and ReadAllText.

In the Windows 8.1 and Windows Phone 8.1 projects, however, you’re working with a version of

.NET created by Microsoft specifically for these platforms. If you type System.IO and a period, you

won’t even see the File class at all! It doesn’t exist! (However, you’ll discover that it does exist in the

UWP project.)

Now go into any code file in a Xamarin.Forms Portable Class Library project. As you’ll recall, a PCL

for Xamarin.Forms targets the following platforms:

 .NET Framework 4.5

 Windows 8

 Windows Phone 8.1

 Xamarin.Android

 Xamarin.iOS

 Xamarin.iOS (Classic)

As you might have already anticipated, the System.IO namespace in a PCL is also missing the File

class. PCLs are configured to support multiple target platforms. Consequently, the APIs implemented

within the PCL are necessarily an intersection of the APIs in these target platforms.

Beginning with Windows 8 and the Windows Runtime API, Microsoft completely revamped file I/O

and created a whole new set of classes. Your Windows 8.1, Windows Phone 8.1, and UWP applications

instead use classes in the Windows.Storage namespace for file I/O.

If you are targeting only iOS and Android in your Xamarin.Forms applications, you can share file I/O

code between the two platforms. You can use the static File methods and everything else in Sys-

tem.IO.

If you also want to target one of the Windows or Windows Phone platforms, you’ll want to make

use of DependencyService (discussed in Chapter 9, “Platform-specific API calls”) for different file I/O

logic for each of the platforms.

Chapter 20 Async and file I/O 643

A first shot at cross-platform file I/O
In the general case, you’ll use DependencyService to give your Xamarin.Forms applications access to

file I/O functions. As you know from the previous explorations into DependencyService, you can de-

fine the functions you want in an interface in the Portable Class Library project, while the code to im-

plement these functions resides in separate classes in the individual platforms.

The file I/O functions developed in this chapter will be put to a good use in the NoteTaker applica-

tion in Chapter 24, “Page navigation.“ For a first shot at file I/O, let’s work with a much simpler solution,

named TextFileTryout, that implements several functions to work with text files. Let’s also restrict our-

selves to getting this program running on iOS and Android and forget about the Windows platforms

for the moment.

The first step in making use of DependencyService is creating an interface in the PCL that defines

all the methods you’ll need. Here is such an interface in the TextFileTryout project, named IFile-

Helper:

namespace TextFileTryout

{

 public interface IFileHelper

 {

 bool Exists(string filename);

 void WriteText(string filename, string text);

 string ReadText(string filename);

 IEnumerable<string> GetFiles();

 void Delete(string filename);

 }

}

The interface defines functions to determine whether a file exists, to write and read entire text files in

one shot, to enumerate all the files created by the application, and to delete a file. In each platform im-

plementation, these functions are restricted to the private file area associated with the application.

You then implement this interface in each of the platforms. Here’s the FileHelper class in the iOS

project, complete with using directives and the required Dependency attribute:

using System;

using System.Collections.Generic;

using System.IO;

using Xamarin.Forms;

[assembly: Dependency(typeof(TextFileTryout.iOS.FileHelper))]

namespace TextFileTryout.iOS

{

 class FileHelper : IFileHelper

 {

Chapter 20 Async and file I/O 644

 public bool Exists(string filename)

 {

 string filepath = GetFilePath(filename);

 return File.Exists(filepath);

 }

 public void WriteText(string filename, string text)

 {

 string filepath = GetFilePath(filename);

 File.WriteAllText(filepath, text);

 }

 public string ReadText(string filename)

 {

 string filepath = GetFilePath(filename);

 return File.ReadAllText(filepath);

 }

 public IEnumerable<string> GetFiles()

 {

 return Directory.GetFiles(GetDocsPath());

 }

 public void Delete(string filename)

 {

 File.Delete(GetFilePath(filename));

 }

 // Private methods.

 string GetFilePath(string filename)

 {

 return Path.Combine(GetDocsPath(), filename);

 }

 string GetDocsPath()

 {

 return Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);

 }

 }

}

It is essential that this class explicitly implements the IFileHelper interface and includes a Depend-

ency attribute with the name of the class. These allow the DependencyService class in Xama-

rin.Forms to find this implementation of IFileHelper in the platform project. Two private methods at

the bottom allow the program to construct a fully qualified filename using the directory of the applica-

tion’s private storage available from the Environment.GetFolderPath method.

In both Xamarin.iOS and Xamarin.Android, the implementation of Environment.GetFolderPath

obtains the platform-specific area of the application’s local storage, although the directory names that

the method returns for the two platforms are very different.

As a result, the FileHelper class in the Android project is exactly the same as the one in the iOS

Chapter 20 Async and file I/O 645

project apart from the different namespace names.

The iOS and Android versions of FileHelper make use of the static shortcut methods in the File

class and a simple static method of Directory for obtaining all the files stored with the application.

However, the implementation of IFileHelper in the Windows 8.1 and Windows Phone 8.1 projects

can’t use the shortcut methods in the File class because they are not available, and the Environ-

ment.GetFolderPath method isn’t available in the UWP project.

Moreover, applications written for these Windows platforms should instead use file I/O functions

implemented in the Windows Runtime API. Because the file I/O functions in the Windows Runtime are

asynchronous, they do not fit into the interface established by the IFileHelper interface. For that

reason, the version of FileHelper in the three Windows projects is forced to leave the crucial meth-

ods unimplemented. Here’s the version in the UWP project:

using System;

using System.Collections.Generic;

using Xamarin.Forms;

[assembly: Dependency(typeof(TextFileTryout.UWP.FileHelper))]

namespace TextFileTryout.UWP

{

 class FileHelper : IFileHelper

 {

 public bool Exists(string filename)

 {

 return false;

 }

 public void WriteText(string filename, string text)

 {

 throw new NotImplementedException("Writing files is not implemented");

 }

 public string ReadText(string filename)

 {

 throw new NotImplementedException("Reading files is not implemented");

 }

 public IEnumerable<string> GetFiles()

 {

 return new string[0];

 }

 public void Delete(string filename)

 {

 }

 }

}

The version of FileHelper in the Windows 8.1 and Windows Phone 8.1 projects is identical except for

the namespace name.

Chapter 20 Async and file I/O 646

Normally, an application needs to reference the methods in each platform by using the Dependen-

cyService.Get method. However, the TextFileTryout program has made things easy for itself by

defining a class named FileHelper in the PCL project that also implements IFileHelper, but incor-

porates the call to the Get method of DependencyService to call the platform versions of these

methods:

namespace TextFileTryout

{

 class FileHelper : IFileHelper

 {

 IFileHelper fileHelper = DependencyService.Get<IFileHelper>();

 public bool Exists(string filename)

 {

 return fileHelper.Exists(filename);

 }

 public void WriteText(string filename, string text)

 {

 fileHelper.WriteText(filename, text);

 }

 public string ReadText(string filename)

 {

 return fileHelper.ReadText(filename);

 }

 public IEnumerable<string> GetFiles()

 {

 IEnumerable<string> filepaths = fileHelper.GetFiles();

 List<string> filenames = new List<string>();

 foreach (string filepath in filepaths)

 {

 filenames.Add(Path.GetFileName(filepath));

 }

 return filenames;

 }

 public void Delete(string filename)

 {

 fileHelper.Delete(filename);

 }

 }

}

Notice that the GetFiles method performs a little surgery on the filenames returned from the

platform implementation. The filenames that are obtained from the platform implementations of Get-

Files are fully qualified, and while it might be interesting to see the folder names that iOS and An-

droid use for application local storage, those filenames are going to be displayed in a ListView where

the folder names will just be a distraction, so this GetFiles method strips off the file path.

Chapter 20 Async and file I/O 647

The TextFileTryoutPage class tests these functions. The XAML file includes an Entry for a file-

name, an Editor for the file contents, a Button labeled “Save”, and a ListView with all the previ-

ously saved filenames:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="TextFileTryout.TextFileTryoutPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Entry x:Name="filenameEntry"

 Grid.Row="0"

 Placeholder="filename" />

 <Editor x:Name="fileEditor"

 Grid.Row="1">

 <Editor.BackgroundColor>

 <OnPlatform x:TypeArguments="Color"

 WinPhone="#D0D0D0" />

 </Editor.BackgroundColor>

 </Editor>

 <Button x:Name="saveButton"

 Text="Save"

 Grid.Row="2"

 HorizontalOptions="Center"

 Clicked="OnSaveButtonClicked" />

 <ListView x:Name="fileListView"

 Grid.Row="3"

 ItemSelected="OnFileListViewItemSelected">

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding}">

 <TextCell.ContextActions>

 <MenuItem Text="Delete"

 IsDestructive="True"

 Clicked="OnDeleteMenuItemClicked" />

 </TextCell.ContextActions>

 </TextCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </Grid>

Chapter 20 Async and file I/O 648

</ContentPage>

Just to keep things simple, all processing is performed in the code-behind file without a ViewModel.

The code-behind file implements all the event handlers from the XAML file. The Save button checks

whether the file exists first and displays an alert box if it does. Selecting one of the files in the

ListView loads it in. In addition, the ListView implements a context menu to delete a file. All the file

I/O functions are methods of the FileHelper class defined in the PCL and instantiated as a field at the

top of the class:

public partial class TextFileTryoutPage : ContentPage

{

 FileHelper fileHelper = new FileHelper();

 public TextFileTryoutPage()

 {

 InitializeComponent();

 RefreshListView();

 }

 async void OnSaveButtonClicked(object sender, EventArgs args)

 {

 string filename = filenameEntry.Text;

 if (fileHelper.Exists(filename))

 {

 bool okResponse = await DisplayAlert("TextFileTryout",

 "File " + filename +

 " already exists. Replace it?",

 "Yes", "No");

 if (!okResponse)

 return;

 }

 string errorMessage = null;

 try

 {

 fileHelper.WriteText(filenameEntry.Text, fileEditor.Text);

 }

 catch (Exception exc)

 {

 errorMessage = exc.Message;

 }

 if (errorMessage == null)

 {

 filenameEntry.Text = "";

 fileEditor.Text = "";

 RefreshListView();

 }

 else

 {

Chapter 20 Async and file I/O 649

 await DisplayAlert("TextFileTryout", errorMessage, "OK");

 }

 }

 async void OnFileListViewItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 if (args.SelectedItem == null)

 return;

 string filename = (string)args.SelectedItem;

 string errorMessage = null;

 try

 {

 fileEditor.Text = fileHelper.ReadText((string)args.SelectedItem);

 filenameEntry.Text = filename;

 }

 catch (Exception exc)

 {

 errorMessage = exc.Message;

 }

 if (errorMessage != null)

 {

 await DisplayAlert("TextFileTryout", errorMessage, "OK");

 }

 }

 void OnDeleteMenuItemClicked(object sender, EventArgs args)

 {

 string filename = (string)((MenuItem)sender).BindingContext;

 fileHelper.Delete(filename);

 RefreshListView();

 }

 void RefreshListView()

 {

 fileListView.ItemsSource = fileHelper.GetFiles();

 fileListView.SelectedItem = null;

 }

}

The code-behind file calls DisplayAlert with the await operator on three occasions: The Save

button uses DisplayAlert if the filename you specify already exists. This confirms that your real in-

tention is to replace an existing file. The other two uses are for notification purposes for errors that oc-

cur when files are saved or loaded. The file save and file load operations are in try and catch blocks

to catch any errors that might occur. The file save operation will fail for an illegal filename, for example.

It is less likely that an error will be encountered on reading a file, but the program checks anyway.

The alerts that notify the user of an error could conceivably be displayed without the await opera-

tor, but they use await anyway to demonstrate a basic principle involved in exception handling: Alt-

hough C# 6 allows using await in a catch block, C# 5 does not. To get around this restriction, the

Chapter 20 Async and file I/O 650

catch block simply saves the error message in a variable called errorMessage, and then the code fol-

lowing the catch block uses DisplayAlert to display that text if it exists. This structure allows these

event handlers to conclude with different processing depending on successful completion or an error.

Notice also that the constructor concludes with a call to RefreshListView to display all the exist-

ing files in the ListView, and the code-behind file also calls that method when a new file has been

saved or a file has been deleted.

However, this program does not work on the Windows platforms. Let’s fix that.

Accommodating Windows Runtime file I/O
The Windows Runtime API defined a whole new array of file I/O classes. Part of the impetus for this

was the recognition of an industry-wide transition away from the relatively unconstrained file access of

desktop applications toward a more sandboxed environment.

Much of the new file I/O API can be found in the Windows Runtime namespaces Windows.Stor-

age and Windows.Storage.Streams. To store data that is private to an application, a Windows

Runtime program first gets a special StorageFolder object:

StorageFolder localFolder = ApplicationData.Current.LocalFolder;

ApplicationData defines a static property named Current that returns the ApplicationData ob-

ject for the application. LocalFolder is an instance property of ApplicationData.

StorageFolder defines methods named CreateFileAsync to create a new file and GetFile-

Async to open an existing file. These two methods obtain objects of type StorageFile. With that ob-

ject, a program can open the file for writing or reading with OpenAsync or OpenReadAsync. These

methods obtain an IRandomAccessStream object. From this, DataWriter or DataReader objects

are created to perform write or read operations.

This sounds a bit lengthy, and it is. Rather simpler approaches involve static methods of the FileIO

class, which are similar to the static methods of the .NET File class. For text files, for example,

FileIO.ReadTextAsync and FileIO.WriteTextAsync open a file, perform the read or write ac-

cess, and close the file in one shot. The first argument to these methods is a StorageFile object.

At any rate, by this time you’ve undoubtedly noticed the frequent Async suffixes on these method

names. Internally, all these methods spin off secondary threads of execution for doing the actual work

and return quickly to the caller. The work takes place in the background, and the caller is notified of

completion (or error) through callback functions.

Why is this?

When Windows 8 was first being created, the Microsoft developers took a good, hard look at timing

and decided that any function call that requires more than 50 milliseconds to execute should be made

asynchronous so that it would not interfere with the responsiveness of the user interface. APIs that re-

quire more than 50 milliseconds obviously include the file I/O functions, which often need to access

Chapter 20 Async and file I/O 651

potentially slow pieces of hardware like disk drives or a network. Any Windows Runtime file I/O

method that could possibly cause a physical storage device to be accessed was made asynchronous

and given an Async suffix.

However, these asynchronous methods do not return Task objects. In the Windows Runtime, meth-

ods that return data have return types of IAsyncOperation<TResult>, while methods that do not

return information have return types of IAsyncAction. These interfaces can all be found in the Sys-

tem.Foundations namespace.

Although these interfaces are not the same as Task and Task<T>, they are similar, and you can use

await with them. You can also convert between the two asynchronous protocols. The System.Run-

time.WindowsRuntime assembly includes a System namespace with a WindowsRuntimeSystem-

Extensions class that has extension methods named AsAsyncAction, AsAsyncOpertion, and

AsTask that perform these conversions.

Let’s rework the TextFileTryout program to accommodate asynchronous file I/O. The revised pro-

gram is called TextFileAsync and is developed in the next section. Because asynchronous file I/O

functions in the Windows projects will be accessed, all the file functions in the IFileHelper interface

are defined to return Task or Task<T> objects.

Platform-specific libraries

Every programmer knows that potentially reusable code should be put in a library, and this is also the

case for code used with dependency services. The asynchronous file I/O functions developed here will

be reused in the NoteTaker program in Chapter 24, and you might want to use these functions in your

own applications or perhaps develop your own functions.

However, these file I/O classes can’t be put in just one library. Each of the various platform imple-

mentations of FileHelper must be in a library for that specific platform. This requires separate librar-

ies for each platform.

The Libraries directory of the downloadable code for this book contains a solution named Xama-

rin.FormsBook.Platform. The Platform part of the name was inspired by the various Xamarin-

.Forms.Platform libraries. Each of the various platforms is a separate library in this solution.

The Xamarin.FormsBook.Platform solution contains no fewer than seven library projects, each of

which was created somewhat differently:

 Xamarin.FormsBook.Platform is a normal Xamarin.Forms Portable Class Library with a profile

of 111, which means that it can be accessed by all the platforms. You can create such a library

in Visual Studio by selecting Cross Platform at the left of the Add New Project dialog, and

Class Library (Xamarin.Forms) in the central area. In the Xamarin Studio New Project dialog,

select Multiplatform and Library at the left, and Xamarin.Forms and Class Library in the

central area.

Chapter 20 Async and file I/O 652

 Xamarin.FormsBook.Platform.iOS was created in Visual Studio by selecting iOS in the left

column of the Add New Project dialog, and Class Library (iOS) in the central section. In

Xamarin Studio select iOS and Library in the New Project dialog, and Class Library in the cen-

tral area.

 Xamarin.FormsBook.Platform.Android was created in Visual Studio by selecting Android at

the left of the Add New Project dialog and Class Library (Android) in the central section. In

Xamarin.Studio, select Android and Library at the left and Class Library in the central section.

 Xamarin.FormsBook.Platform.UWP is a library for Windows 10 and Windows 10 Mobile. It

was created in Visual Studio by selecting Windows and Universal at the left, and then Class

Library (Universal Windows).

 Xamarin.FormsBook.Platform.Windows is a Portable Class Library just for Windows 8.1. It

was created in Visual Studio by selecting Windows, Windows 8, and Windows at the left, and

then Class Library (Windows 8.1).

 Xamarin.FormsBook.Platform.WinPhone is a Portable Class Library just for Windows Phone

8.1. It was created in Visual Studio by selecting Windows, Windows 8, and Windows Phone at

the left, and then Class Library (Windows Phone).

 You’ll often find that the three Windows platforms can share code because they all use variants

of the Windows Runtime API. For this reason, a seventh project was created named Xama-

rin.FormsBook.Platform.WinRT. This is a shared project, and it was created in Visual Studio by

searching for “Shared” in the Add New Project dialog, and selecting the Shared Project for

C#.

If you’re creating such a solution yourself, you’ll also need to use the Manage Packages for Solu-

tion dialog to install the appropriate Xamarin.Forms NuGet packages for all these libraries.

You’ll also need to establish references between the various projects in the solution. All the individ-

ual platform projects (with the exception of Xamarin.FormsBook.Platform.WinRT) need a reference

to Xamarin.FormsBook.Platform. You set these references in the Reference Manager dialog by se-

lecting Solution at the left. In addition, the three Windows projects (UWP, Windows, and WinPhone)

all need references to the shared Xamarin.FormsBook.Platform.WinRT project. You set these refer-

ences in the Reference Manager dialog by selecting Shared Projects at the left.

All the projects have a static Toolkit.Init method. Here’s the one in the Xamarin.Forms-

Book.Platform library:

namespace Xamarin.FormsBook.Platform

{

 public static class Toolkit

 {

 public static void Init()

 {

 }

 }

Chapter 20 Async and file I/O 653

}

Most of the others are similar except that the version in the Android library actually saves some in-

formation that might be useful to classes implemented in this library:

namespace Xamarin.FormsBook.Platform.Android

{

 public static class Toolkit

 {

 public static void Init(Activity activity, Bundle bundle)

 {

 Activity = activity;

 }

 public static Activity Activity { private set; get; }

 }

}

The Toolkit.Init method in each of the Windows platforms calls a do-nothing Toolkit.Init

method in the shared Xamarin.FormsBook.Platform.WinRT project:

namespace Xamarin.FormsBook.Platform.UWP

{

 public static class Toolkit

 {

 public static void Init()

 {

 Xamarin.FormsBook.Platform.WinRT.Toolkit.Init();

 }

 }

}

The purpose of these methods is to ensure that the libraries are bound to the application even if the

application does not directly access anything in the library. It is very often the case when you’re work-

ing with dependency services and custom renderers that the application does not directly call any li-

brary function. However, if you later discover that you really do need to perform some library initializa-

tion, the method already exists for you to do so.

You’ll discover that the version of the Xamarin.FormsBook.Platform libraries included with the

downloadable code for this book already includes the PlatformSoundPlayer classes from Chapter 9,

“Platform-specific API calls.” You’ll also see some classes beginning with the words Ellipse and

StepSlider. These are discussed in Chapter 27, “Custom renderers.”

Let’s focus on the new asynchronous FileHelper classes. The Xamarin.FormsBook.Platform li-

brary contains the new IFileHelper interface:

using System.Collections.Generic;

using System.Threading.Tasks;

namespace Xamarin.FormsBook.Platform

{

 public interface IFileHelper

Chapter 20 Async and file I/O 654

 {

 Task<bool> ExistsAsync(string filename);

 Task WriteTextAsync(string filename, string text);

 Task<string> ReadTextAsync(string filename);

 Task<IEnumerable<string>> GetFilesAsync();

 Task DeleteAsync(string filename);

 }

}

By convention, methods that return Task objects have a suffix of Async.

All three Windows platforms can share the same FileHelper class, so this shared class is imple-

mented in the shared Xamarin.FormsBook.Platform.WinRT project. Each of the five methods in the

FileHelper class begins with a call to obtain the StorageFolder associated with the application’s

local storage area. Each of them makes asynchronous calls using await and is flagged with the async

keyword:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Windows.Storage;

using Xamarin.Forms;

[assembly: Dependency(typeof(Xamarin.FormsBook.Platform.WinRT.FileHelper))]

namespace Xamarin.FormsBook.Platform.WinRT

{

 class FileHelper : IFileHelper

 {

 public async Task<bool> ExistsAsync(string filename)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 try

 {

 await localFolder.GetFileAsync(filename);

 }

 catch

 {

 return false;

 }

 return true;

 }

 public async Task WriteTextAsync(string filename, string text)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IStorageFile storageFile = await localFolder.CreateFileAsync(filename,

Chapter 20 Async and file I/O 655

 CreationCollisionOption.ReplaceExisting);

 await FileIO.WriteTextAsync(storageFile, text);

 }

 public async Task<string> ReadTextAsync(string filename)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IStorageFile storageFile = await localFolder.GetFileAsync(filename);

 return await FileIO.ReadTextAsync(storageFile);

 }

 public async Task<IEnumerable<string>> GetFilesAsync()

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IEnumerable<string> filenames =

 from storageFile in await localFolder.GetFilesAsync()

 select storageFile.Name;

 return filenames;

 }

 public async Task DeleteAsync(string filename)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 StorageFile storageFile = await localFolder.GetFileAsync(filename);

 await storageFile.DeleteAsync();

 }

 }

}

Although each of the methods is defined as returning a Task or a Task<T> object, the bodies of

the methods don’t have any reference to Task or Task<T>. Instead, the methods that return a Task

object simply do some work and then end the method with an implicit return statement. The Ex-

istsAsync method is defined as returning a Task<bool> but returns either true or false. (There is

no Exists method in the StorageFolder class, so a workaround with try and catch is necessary.)

Similarly, the ReadTextAsync method is defined as returning a Task<string>, but the body re-

turns a string, which is obtained from applying the await operator to the IAsyncOpera-

tion<string> return value of File.ReadTextAsync. The C# compiler performs the necessary con-

versions.

When a program calls this ReadTextAsync method, the method executes until the first await op-

erator, and then it returns a Task<string> object to the caller. The caller can use either Continue-

With or await to obtain the string when the FileIO.ReadTextAsync method has completed.

For iOS and Android, however, we now have a problem. All the methods in IFileHelper are now

defined as asynchronous methods that return Task or Task<T> objects, but we’ve already seen that

the methods in the System.IO namespace are not asynchronous. What do we do?

The FileHelper class in the iOS namespace uses two strategies. In some cases, the System.IO

Chapter 20 Async and file I/O 656

classes do include asynchronous methods. This is the case for the WriteAsync method of Stream-

Writer and the ReadAsync method of StreamReader. For the other methods, however, a static

FromResult method of Task<T> is used to convert an object or value to a Task<T> object for the

method return value. This does not actually convert the method to an asynchronous method, but

simply allows the method to have the signature of an asynchronous method:

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Threading.Tasks;

using Xamarin.Forms;

[assembly: Dependency(typeof(Xamarin.FormsBook.Platform.iOS.FileHelper))]

namespace Xamarin.FormsBook.Platform.iOS

{

 class FileHelper : IFileHelper

 {

 public Task<bool> ExistsAsync(string filename)

 {

 string filepath = GetFilePath(filename);

 bool exists = File.Exists(filepath);

 return Task<bool>.FromResult(exists);

 }

 public async Task WriteTextAsync(string filename, string text)

 {

 string filepath = GetFilePath(filename);

 using (StreamWriter writer = File.CreateText(filepath))

 {

 await writer.WriteAsync(text);

 }

 }

 public async Task<string> ReadTextAsync(string filename)

 {

 string filepath = GetFilePath(filename);

 using (StreamReader reader = File.OpenText(filepath))

 {

 return await reader.ReadToEndAsync();

 }

 }

 public Task<IEnumerable<string>> GetFilesAsync()

 {

 // Sort the filenames.

 IEnumerable<string> filenames =

 from filepath in Directory.EnumerateFiles(GetDocsFolder())

 select Path.GetFileName(filepath);

 return Task<IEnumerable<string>>.FromResult(filenames);

 }

Chapter 20 Async and file I/O 657

 public Task DeleteAsync(string filename)

 {

 File.Delete(GetFilePath(filename));

 return Task.FromResult(true);

 }

 string GetDocsFolder()

 {

 return Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);

 }

 string GetFilePath(string filename)

 {

 return Path.Combine(GetDocsFolder(), filename);

 }

 }

}

The Android FileHelper class is the same as the iOS class but with a different namespace.

Notice that the only error checking within these platform implementations is for the ExistsAsync

method in the Windows Runtime platforms, which uses the exception to determine whether the file

exists or not. None of the other methods—and particularly the WriteTextAsync and ReadTextAsync

methods—is performing any error checking. One of the nice features of using await is that any excep-

tion can be caught at a later time when you’re actually calling these methods.

You might also have noticed that the individual GetFilesAsync methods are now removing the

path from the fully qualified filename, so that job doesn’t need to be performed by the FileHelper

class in the Xamarin.FormsBook.Platform project:

namespace Xamarin.FormsBook.Platform

{

 class FileHelper

 {

 IFileHelper fileHelper = DependencyService.Get<IFileHelper>();

 public Task<bool> ExistsAsync(string filename)

 {

 return fileHelper.ExistsAsync(filename);

 }

 public Task WriteTextAsync(string filename, string text)

 {

 return fileHelper.WriteTextAsync(filename, text);

 }

 public Task<string> ReadTextAsync(string filename)

 {

 return fileHelper.ReadTextAsync(filename);

 }

 public Task<IEnumerable<string>> GetFilesAsync()

Chapter 20 Async and file I/O 658

 {

 return fileHelper.GetFilesAsync();

 }

 public Task DeleteAsync(string filename)

 {

 return fileHelper.DeleteAsync(filename);

 }

 }

}

Now that we have a library, we need to access this library from an application. The TextFileAsync

solution was created normally. Then, all seven projects in the Xamarin.FormsBook.Platform solution

were added to this solution. These projects must be added separately by using the Add and Existing

Project menu item for the solution. There is no Add All Projects from Solution menu item, but if you

use these libraries in your own projects, you’ll wish there were!

At this point, the TextFileAsync solution contains 13 projects: Five application projects, a shared

PCL with the application code, and seven library projects.

References must be established between these projects by using the Reference Manager for the

following relationships:

 TextFileAsync has a reference to Xamarin.FormsBook.Platform.

 TextFileAsync.iOS has a reference to Xamarin.FormsBook.Platform.iOS.

 TextFileAsync.Droid has a reference to Xamarin.FormsBook.Platform.Android.

 TextFileAsync.UWP has a reference to Xamarin.FormsBook.Platform.UWP.

 TextFileAsync.Windows has a reference to Xamarin.FormsBook.Platform.Windows.

 TextFileAsync.WinPhone has a reference to Xamarin.FormsBook.Platform.WinPhone.

Of course, all the application projects have normal references to the TextFileAsync PCL, and, as

you’ll recall, the Xamarin.FormsBook.Platform.UWP, Windows, and WinPhone projects all have ref-

erences to the shared Xamarin.FormsBook.Platform.WinRT project.

Also, all the TextFileAsync projects should make calls to the various Toolkit.Init methods in the

libraries. In the TextFileAsync project itself, make the call in the constructor of the App class:

namespace TextFileAsync

{

 public class App : Application

 {

 public App()

 {

 Xamarin.FormsBook.Platform.Toolkit.Init();

 …

 }

 …

Chapter 20 Async and file I/O 659

 }

}

In the iOS project, make the call after the normal Forms.Init call in the AppDelegate class:

namespace TextFileAsync.iOS

{

 …

 public partial class AppDelegate :

 global::Xamarin.Forms.Platform.iOS.FormsApplicationDelegate

 {

 …

 public override bool FinishedLaunching(UIApplication app, NSDictionary options)

 {

 global::Xamarin.Forms.Forms.Init();

 Xamarin.FormsBook.Platform.iOS.Toolkit.Init();

 LoadApplication(new App());

 …

 }

 }

}

In the Android project, call Toolkit.Init with the MainActivity and Bundle objects in the

MainActivity class after the normal Forms.Init call:

namespace TextFileAsync.Droid

{

 …

 public class MainActivity : global::Xamarin.Forms.Platform.Android.FormsApplicationActivity

 {

 protected override void OnCreate(Bundle bundle)

 {

 …

 global::Xamarin.Forms.Forms.Init(this, bundle);

 Xamarin.FormsBook.Platform.Android.Toolkit.Init(this, bundle);

 LoadApplication(new App());

 }

 }

}

In the three Windows platforms, call Toolkit.Init right after Forms.Init in the App.xaml.cs file:

namespace TextFileAsync.UWP

{

 …

 sealed partial class App : Application

 {

 …

 Xamarin.Forms.Forms.Init(e);

 Xamarin.FormsBook.Platform.UWP.Toolkit.Init();

 …

 }

}

With that overhead out of the way, the actual writing of the application can begin. The XAML file

Chapter 20 Async and file I/O 660

for TextFileAsyncPage is the same as TextFileTryoutPage, but the code-behind file must be

fashioned to work with the asynchronous file I/O methods. Any exceptions that might occur in the file

I/O functions must be caught here, which means that any method that can throw an exception must be

in a try block along with the await operator:

public partial class TextFileAsyncPage : ContentPage

{

 FileHelper fileHelper = new FileHelper();

 public TextFileAsyncPage()

 {

 InitializeComponent();

 RefreshListView();

 }

 async void OnSaveButtonClicked(object sender, EventArgs args)

 {

 saveButton.IsEnabled = false;

 string filename = filenameEntry.Text;

 if (await fileHelper.ExistsAsync(filename))

 {

 bool okResponse = await DisplayAlert("TextFileTryout",

 "File " + filename +

 " already exists. Replace it?",

 "Yes", "No");

 if (!okResponse)

 return;

 }

 string errorMessage = null;

 try

 {

 await fileHelper.WriteTextAsync(filenameEntry.Text, fileEditor.Text);

 }

 catch (Exception exc)

 {

 errorMessage = exc.Message;

 }

 if (errorMessage == null)

 {

 filenameEntry.Text = "";

 fileEditor.Text = "";

 RefreshListView();

 }

 else

 {

 await DisplayAlert("TextFileTryout", errorMessage, "OK");

 }

Chapter 20 Async and file I/O 661

 saveButton.IsEnabled = true;

 }

 async void OnFileListViewItemSelected(object sender, SelectedItemChangedEventArgs args)

 {

 if (args.SelectedItem == null)

 return;

 string filename = (string)args.SelectedItem;

 string errorMessage = null;

 try

 {

 fileEditor.Text = await fileHelper.ReadTextAsync((string)args.SelectedItem);

 filenameEntry.Text = filename;

 }

 catch (Exception exc)

 {

 errorMessage = exc.Message;

 }

 if (errorMessage != null)

 {

 await DisplayAlert("TextFileTryout", errorMessage, "OK");

 }

 }

 async void OnDeleteMenuItemClicked(object sender, EventArgs args)

 {

 string filename = (string)((MenuItem)sender).BindingContext;

 await fileHelper.DeleteAsync(filename);

 RefreshListView();

 }

 async void RefreshListView()

 {

 fileListView.ItemsSource = await fileHelper.GetFilesAsync();

 fileListView.SelectedItem = null;

 }

}

The result is that this code is structured very much like the previous code that used the synchronous

file I/O functions. One difference, however, is that the OnSaveButtonClicked method disables the

Save button when beginning processing and then reenables it when everything is finished. This is

simply to prevent multiple presses of the Save button that might cause multiple overlapping calls to

FileIO.WriteFileAsync.

Here’s the program running on the three platforms:

Chapter 20 Async and file I/O 662

Keeping it in the background
Some of the FileHelper methods in the Windows Runtime implementation have multiple await op-

erators to deal with a series of asynchronous calls. This makes sense: Each step in the process must

complete before the next step executes. However, one of the characteristics of await is that it resumes

execution on the same thread that it was invoked on rather than the background thread. This is often

convenient when you are obtaining a result to update the user interface. However, within the methods

in the FileHelper implementations, this isn’t necessary. Everything within the body of the Write-

TextAsync and ReadTextAsync methods can occur in a secondary thread.

The Task class has a method named ConfigureAwait that can control which thread await re-

sumes on. If you pass a false argument to ConfigureAwait, the completed task will resume on the

same worker thread used to implement the function. If you’d like to use this in the FileHelper code,

you’ll need to convert the IAsyncAction and IAsyncOperation objects returned by the Windows

Runtime methods to tasks by using AsTask and then call ConfigureAwait on that Task object.

For example, here’s how the WriteTextAsync and ReadTextAsync methods are implemented in

the existing Xamarin.FormsBook.Platform.WinRT project:

namespace Xamarin.FormsBook.Platform.WinRT

{

 class FileHelper : IFileHelper

 {

 …

 public async Task WriteTextAsync(string filename, string text)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

Chapter 20 Async and file I/O 663

 IStorageFile storageFile = await localFolder.CreateFileAsync(filename,

 CreationCollisionOption.ReplaceExisting);

 await FileIO.WriteTextAsync(storageFile, text);

 }

 public async Task<string> ReadTextAsync(string filename)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IStorageFile storageFile = await localFolder.GetFileAsync(filename);

 return await FileIO.ReadTextAsync(storageFile);

 }

 …

 }

}

These methods have two await operators each. To make these methods slightly more efficient, you

can use AsTask and ConfigureAwait to change them to these:

namespace Xamarin.FormsBook.Platform.WinRT

{

 class FileHelper : IFileHelper

 {

 …

 public async Task WriteTextAsync(string filename, string text)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IStorageFile storageFile = await localFolder.CreateFileAsync(filename,

 CreationCollisionOption.ReplaceExisting).

 AsTask().ConfigureAwait(false);

 await FileIO.WriteTextAsync(storageFile, text).AsTask().ConfigureAwait(false);

 }

 public async Task<string> ReadTextAsync(string filename)

 {

 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 IStorageFile storageFile = await localFolder.GetFileAsync(filename).

 AsTask().ConfigureAwait(false);

 return await FileIO.ReadTextAsync(storageFile).AsTask().ConfigureAwait(false);

 }

 …

 }

}

Now the methods following the first await operator run in worker threads, and await doesn’t need to

switch back to the user-interface thread just to continue with the method. The switch back to the user-

interface thread occurs when await is used to call these methods from TextFileAsyncPage.

You probably want to restrict this technique to underlying library functions, or for code in your

page classes that contain a series of await operators that don’t access user-interface objects. The tech-

nique doesn’t make as much sense for functions that contain just one await operator that are called

from the user-interface thread, because the switch back to the user-interface thread has to occur at

some time, and if it doesn’t occur in the library function, it will occur in the code that calls the library

Chapter 20 Async and file I/O 664

function.

Don’t block the UI thread!
Sometimes, there’s a temptation to avoid the hassle of ContinueWith or even the lesser hassle of

await simply by blocking the user-interface thread until a background process completes. Perhaps

you know that the background process will complete very quickly and there’s nothing much the user

can do anyway until it finishes. What’s the harm?

Don’t do it! Not only is it impolite to the user, but it can introduce subtle bugs into your application.

Let’s take an example: In the code-behind file of TextFileAsyncPage, the OnFileListView-

ItemSelected handler has the following code to read the file and set the contents in the Editor:

fileEditor.Text = await fileHelper.ReadTextAsync((string)args.SelectedItem);

You might have discovered, perhaps accidentally or perhaps by experiment, that in a statement like

this, you can leave out the await operator and just access the Result property of the Task<string>

object returned from ReadTextAsync. That Result property is the content of the file being read:

fileEditor.Text = fileHelper.ReadTextAsync((string)args.SelectedItem).Result;

The code seems fine, and it might even work. But the way it works is not good. This statement will

block the user-interface thread until the ReadTextAsync method has completed and Result is avail-

able. The user interface will be unresponsive during this time.

Moreover, if you haven’t used ConfigureAwait(false) in the implementation of ReadTex-

tAsync in FileHelper, then that ReadTextAsync method will require switching to the user-interface

thread for resuming execution after each await operator. But when it tries to switch back to the user-

interface thread, the UI thread will not be available because it’s being blocked in the ReadTextAsync

call in TextFileAsyncPage, and a classic deadlock results. The program will simply stop executing

entirely.

The rule is simple: Use ContinueWith or await with every asynchronous method.

Your own awaitable methods

Aside from accessing files over the web or from the local file system, applications sometimes have the

need to perform lengthy operations of their own. These operations should be run in the background

on secondary threads of execution. While there are now several ways to do this, it’s best (and certainly

easiest) to use the same Task-based Asynchronous Pattern that is used within Xamarin.Forms and other

.NET graphical environments and define your own asynchronous methods just like the others in these

environments.

The easiest way to run some code on a worker thread is with the Task.Run and Task.Run<T>

Chapter 20 Async and file I/O 665

static methods. The argument is an Action object, generally expressed as a lambda function, and the

return value is a Task. The body of the lambda function is run on a worker thread from the thread

pool, which (if you want to use the thread pool yourself) is accessible via the ThreadPool class. You

can use the await operator directly with Task.Run:

await Task.Run(() =>

{

 // The code that runs in a background thread.

});

Although you can use Task.Run by itself with other code, generally it’s used to construct asynchro-

nous methods. By convention, an asynchronous method has a suffix of Async. The method returns ei-

ther a Task object (if the method does not return any value or object) or a Task<T> object (if it does

return something).

Here’s how you can create an asynchronous method that returns Task:

Task MyMethodAsync(…)

{

 // Perhaps some initialization code.

 return Task.Run(() =>

 {

 // The code that runs in a background thread.

 });

}

The Task.Run method returns a Task object that your method also returns. The Action argument to

Task.Run can use any arguments passed to the MyMethodAsync, but you shouldn’t define any argu-

ments using ref or out. Also, watch out for any reference types you pass to MyMethodAsync. These

can be accessed both from inside the asynchronous code and from outside the method, so you might

need to implement synchronization so that the object isn’t accessed simultaneously from two threads.

The code within the Task.Run call can itself call asynchronous methods using await, but in that

case you’ll need to flag the lambda function passed to Task.Run with async:

return Task.Run(async () =>

{

 // The code that runs in a background thread.

});

If the asynchronous method returns something, you’ll define the method using the generic form of

Task and the generic form of Task.Run:

Task<SomeType> MyMethodAsync(…)

{

 // Perhaps some initialization code.

 return Task.Run<SomeType>(() =>

 {

 // The code that runs in a background thread.

 return anInstanceOfSomeType;

 });

Chapter 20 Async and file I/O 666

}

The value or object returned from the lambda function becomes the Result property of the Task<T>

object returned from Task.Run and from your method.

If you need to have more control over the background process, you can use TaskFactory.Start-

New rather than Task.Run to define the asynchronous method.

There are some variations on the basic Task.Run patterns, as you’ll see in the following several pro-

grams. These programs compute and display the famous Mandelbrot set.

The basic Mandelbrot set
The Polish-born French and American mathematician Benoit Mandelbrot (1924–2010) is best known

for his work connected with complex self-similar surfaces that he called fractals. Among his work in-

volving fractals was an investigation into a recursive formula that generates a fractal image that is now

known as the Mandelbrot set.

The Mandelbrot set is graphed on the complex plane, where each coordinate is a complex number

of the form:

𝑐 = 𝑥 + 𝑦𝑖

The real part x is graphed along the horizontal axis with negative values to the left and positive values

to the right. The imaginary part y is graphed along the vertical axis, increasing from negative values on

the bottom to positive values going up.

To calculate the Mandelbrot set, begin by taking any point on this plane and call it c, and initialize z

to zero:

𝑐 = 𝑥 + 𝑦𝑖

𝑧 = 0

Now perform the following recursive operation:

𝑧 ← 𝑧2 + 𝑐

The result will either diverge to infinity or it will not. If z does not diverge to infinity, then c is said to be

a member of the Mandelbrot set. Otherwise, it is not a member of the Mandelbrot set.

You need to perform this calculation for every point of interest in the complex plane. Generally, the

results are drawn on a bitmap, which means that each pixel in the bitmap corresponds to a particular

complex coordinate. In its simplest rendition, points that belong to the Mandelbrot set are colored

black and other pixels are colored white.

For some complex numbers, it’s easy to determine whether the point belongs to the Mandelbrot

set. For example, the complex number (0 + 0i) obviously belongs to the Mandelbrot set, and you can

quickly establish that (1 + 0i) does not. But in general, you need to perform the recursive calculation.

Chapter 20 Async and file I/O 667

And because this is a fractal, you can’t take shortcuts. For example, if you know that two values c1 and

c2 belong to the Mandelbrot set, you can’t assume that all points between those two points belong to

the Mandelbrot set as well. It is a fundamental characteristic of a fractal to defy interpolation.

How many iterations of the recursive calculation do you need to perform before you can assure

yourself that the particular complex number does or does not belong to the Mandelbrot set? It turns

out that if the absolute value of z in the recursive calculation ever becomes 2 or greater, then the val-

ues will eventually diverge to infinity and the point does not belong to the Mandelbrot set. (The abso-

lute value of a complex number is also referred to as the magnitude of the number; it can be calculated

as the square root of the sum of the squares of the x and y values, which is the Pythagorean theorem.)

However, if after a certain number of iterations the recursive calculation hasn’t yet reached a magni-

tude of 2, there’s no guarantee that it will not diverge with repeated iterations. For this reason, Man-

delbrot sets are notoriously computation-intensive, and ideal for secondary threads of execution.

The MandelbrotSet program demonstrates how this is done. To render the image, the program

makes use of the BmpMaker class (introduced in Chapter 13, “Bitmaps”) from the Xamarin.Forms-

Book.Toolkit library. That library also contains the following structure to represent a complex number:

namespace Xamarin.FormsBook.Toolkit

{

 // Mostly a subset of System.Numerics.Complex.

 public struct Complex : IEquatable<Complex>, IFormattable

 {

 bool gotMagnitude, gotMagnitudeSquared;

 double magnitude, magnitudeSquared;

 public Complex(double real, double imaginary) : this()

 {

 Real = real;

 Imaginary = imaginary;

 }

 public double Real { private set; get; }

 public double Imaginary { private set; get; }

 // MagnitudeSquare and Magnitude calculated on demand and saved.

 public double MagnitudeSquared

 {

 get

 {

 if (gotMagnitudeSquared)

 {

 return magnitudeSquared;

 }

 magnitudeSquared = Real * Real + Imaginary * Imaginary;

 gotMagnitudeSquared = true;

 return magnitudeSquared;

 }

Chapter 20 Async and file I/O 668

 }

 public double Magnitude

 {

 get

 {

 if (gotMagnitude)

 {

 return magnitude;

 }

 magnitude = Math.Sqrt(magnitudeSquared);

 gotMagnitude = true;

 return magnitude;

 }

 }

 public static Complex operator +(Complex left, Complex right)

 {

 return new Complex(left.Real + right.Real, left.Imaginary + right.Imaginary);

 }

 public static Complex operator -(Complex left, Complex right)

 {

 return new Complex(left.Real - right.Real, left.Imaginary - right.Imaginary);

 }

 public static Complex operator *(Complex left, Complex right)

 {

 return new Complex(left.Real * right.Real - left.Imaginary * right.Imaginary,

 left.Real * right.Imaginary + left.Imaginary * right.Real);

 }

 public static bool operator ==(Complex left, Complex right)

 {

 return left.Real == right.Real && left.Imaginary == right.Imaginary;

 }

 public static bool operator !=(Complex left, Complex right)

 {

 return !(left == right);

 }

 public static implicit operator Complex(double value)

 {

 return new Complex(value, 0);

 }

 public static implicit operator Complex(int value)

 {

 return new Complex(value, 0);

 }

 public override int GetHashCode()

Chapter 20 Async and file I/O 669

 {

 return Real.GetHashCode() + Imaginary.GetHashCode();

 }

 public override bool Equals(Object value)

 {

 return Real.Equals(((Complex)value).Real) &&

 Imaginary.Equals(((Complex)value).Imaginary);

 }

 public bool Equals(Complex value)

 {

 return Real.Equals(value) && Imaginary.Equals(value);

 }

 public override string ToString()

 {

 return String.Format("{0} {1} {2}i", Real,

 RealImaginaryConnector(Imaginary),

 Math.Abs(Imaginary));

 }

 public string ToString(string format)

 {

 return String.Format("{0} {1} {2}i", Real.ToString(format),

 RealImaginaryConnector(Imaginary),

 Math.Abs(Imaginary).ToString(format));

 }

 public string ToString(IFormatProvider formatProvider)

 {

 return String.Format("{0} {1} {2}i", Real.ToString(formatProvider),

 RealImaginaryConnector(Imaginary),

 Math.Abs(Imaginary).ToString(formatProvider));

 }

 public string ToString(string format, IFormatProvider formatProvider)

 {

 return String.Format("{0} {1} {2}i", Real.ToString(format, formatProvider),

 RealImaginaryConnector(Imaginary),

 Math.Abs(Imaginary).ToString(format, formatProvider));

 }

 string RealImaginaryConnector(double value)

 {

 return Math.Sign(value) > 0 ? "+" : "\u2013";

 }

 }

}

As the comment at the top indicates, this is mostly a subset of the Complex structure in the .NET Sys-

tem.Numerics namespace, which unfortunately is not available to a Portable Class Library in a Xama-

rin.Forms project. The ToString methods in this Complex structure work a little differently, however,

Chapter 20 Async and file I/O 670

and the original Complex structure does not have a MagnitudeSquared property. A Magnitude-

Squared property is handy for a Mandelbrot calculation: Checking if the Magnitude property is less

than 2 is the same as checking if the MagnitudeSquared property is less than 4, but without the

square root calculation.

The MandelbrotSet program has the following XAML file:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="MandelbrotSet.MandelbrotSetPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <Grid VerticalOptions="FillAndExpand">

 <ContentView Padding="10, 0"

 VerticalOptions="Center">

 <ActivityIndicator x:Name="activityIndicator" />

 </ContentView>

 <Image x:Name="image" />

 </Grid>

 <Button x:Name="calculateButton"

 Text="Calculate"

 FontSize="Large"

 HorizontalOptions="Center"

 Clicked="OnCalculateButtonClicked" />

 </StackLayout>

</ContentPage>

The ActivityIndicator informs the user that the program is busy with the background job. The Im-

age element and that ActivityIndicator share a single-cell Grid so that the ActivityIndicator

can be more toward the vertical center of the screen and then become covered when the bitmap ap-

pears. At the bottom is a Button to begin the calculation.

The code-behind file below begins by defining several constants. The first four constants relate to

the bitmap that the program constructs to display the image of the Mandelbrot set. Throughout this

exercise, these bitmaps will always be square, but the code itself is more generalized and should be

able to accommodate rectangular dimensions.

The center field is the Complex point that corresponds to the center of the bitmap, while the size

field indicates the extent of the real and imaginary coordinates on the bitmaps. These particular cen-

ter and size fields imply that the real coordinates range from –2 on the left of the bitmap to 0.5 on

the right, and the imaginary coordinates range from –1.25 on the bottom to 1.25 on the top. The pix-

elWidth and pixelHeight values indicate the width and height of the bitmap in pixels. The itera-

tions field is the maximum number of iterations of the recursive formula before the program assumes

that the point belongs to the Mandelbrot set:

Chapter 20 Async and file I/O 671

public partial class MandelbrotSetPage : ContentPage

{

 static readonly Complex center = new Complex(-0.75, 0);

 static readonly Size size = new Size(2.5, 2.5);

 const int pixelWidth = 1000;

 const int pixelHeight = 1000;

 const int iterations = 100;

 public MandelbrotSetPage()

 {

 InitializeComponent();

 }

 async void OnCalculateButtonClicked(object sender, EventArgs args)

 {

 calculateButton.IsEnabled = false;

 activityIndicator.IsRunning = true;

 BmpMaker bmpMaker = new BmpMaker(pixelWidth, pixelHeight);

 await CalculateMandelbrotAsync(bmpMaker);

 image.Source = bmpMaker.Generate();

 activityIndicator.IsRunning = false;

 }

 Task CalculateMandelbrotAsync(BmpMaker bmpMaker)

 {

 return Task.Run(() =>

 {

 for (int row = 0; row < pixelHeight; row++)

 {

 double y = center.Imaginary - size.Height / 2 + row * size.Height / pixelHeight;

 for (int col = 0; col < pixelWidth; col++)

 {

 double x = center.Real - size.Width / 2 + col * size.Width / pixelWidth;

 Complex c = new Complex(x, y);

 Complex z = 0;

 int iteration = 0;

 do

 {

 z = z * z + c;

 iteration++;

 }

 while (iteration < iterations && z.MagnitudeSquared < 4);

 bool isMandelbrotSet = iteration == iterations;

 bmpMaker.SetPixel(row, col, isMandelbrotSet ? Color.Black : Color.White);

 }

 }

 });

 }

}

Chapter 20 Async and file I/O 672

The OnCalculateButtonClicked handler is flagged as async. It begins by disabling the Button

to avoid multiple simultaneous calculations and starts the ActivityIndicator display. It then creates

a BmpMaker object with the desired pixel size and passes it to CalculateMandelbrotAsync. When

that method is finished, the Clicked handler continues by setting the bitmap to the Image object and

turning off the ActivityIndicator. The Button is not reenabled.

The lambda function passed to the Task.Run method loops through the rows and columns of the

bitmap created by BmpMaker, and for each pixel, it calculates a complex number c from the x and y

coordinate values. The little do-while loop continues until the maximum number of iterations is

reached or the magnitude is 2 or greater. At that point, a pixel can be set to black or white.

After you press the button, your phone might take a minute or so to loop through all the pixels, but

then you’ll see the classic image:

There’s a little danger in the way the CalculateMandelbrotAsync method is structured. It is

passed a BmpMaker object that the background thread fills with pixels, but the main thread also has

access to this BmpMaker object. If this object were saved as a field, the main thread might contain

some code that alters or sets pixels as the background thread is working. That would probably be a

bug, of course, but in general you can make your asynchronous methods more bulletproof if argu-

ments are restricted to value types rather than reference types. Don’t worry too much if that’s not quite

possible or convenient, but in the next version of the program, the CalculateMandelbrotAsync

method will itself create the BmpMaker object and return it.

Chapter 20 Async and file I/O 673

Marking progress
As you’ve undoubtedly discovered, it’s somewhat disconcerting to press the Calculate button in Man-

delbrotSet and wait for the bitmap to show up. There’s no indication at all how far along the program

has gotten in completing the job, or how much longer you need to wait.

If possible, asynchronous methods should report progress. I’m sure you can rig something up your-

self to do the job, but there is a standard way of reporting progress for methods that return Task ob-

jects. This involves the IProgress<T> interface and the Progress<T> class that implements that in-

terface, both of which are defined in the System namespace. IProgress is defined like so:

public interface IProgress<T>

{

 void Report(T value);

}

To make use of this facility, you define an argument to your asynchronous method of type IPro-

gress. The asynchronous method then periodically calls Report as it’s doing the background job.

Generally, T is either int, in which case the values passed to Report usually range from 1 to 100, or

double, for values ranging from 0 to 1. It’s your choice. For consistency with the Xamarin.Forms Pro-

gressBar, double values from 0 to 1 are ideal.

The code that calls the asynchronous method instantiates a Progress object and passes to its con-

structor a lambda function that is called whenever the asynchronous method calls Report. (Or you can

attach a handler to the Progress object’s ProgressChanged event.) Although Report is called on a

background thread, the lambda function or event handler is called on the thread that instantiated the

Progress object, which means that the lambda function or event handler can safely access user-

interface objects.

The XAML file for the MandelbrotProgress program is the same as the previous XAML file except

that a ProgressBar has replaced the ActivityIndicator:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="MandelbrotProgress.MandelbrotProgressPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <Grid VerticalOptions="FillAndExpand">

 <ContentView Padding="10, 0"

 VerticalOptions="Center">

 <ProgressBar x:Name="progressBar" />

 </ContentView>

 <Image x:Name="image" />

 </Grid>

Chapter 20 Async and file I/O 674

 <Button x:Name="calculateButton"

 Text="Calculate"

 FontSize="Large"

 HorizontalOptions="Center"

 Clicked="OnCalculateButtonClicked" />

 </StackLayout>

</ContentPage>

The code-behind file is very similar, except that a Progress object named progressReporter is

defined as a field and the constructor instantiates it with a lambda function that simply sets the argu-

ment to the Progress property of the ProgressBar. This Progress object is passed to the Calcu-

lateMandelbrotAsync method, which in this new version now takes over the responsibility of creat-

ing and returning the BmpMaker object:

public partial class MandelbrotProgressPage : ContentPage

{

 static readonly Complex center = new Complex(-0.75, 0);

 static readonly Size size = new Size(2.5, 2.5);

 const int pixelWidth = 1000;

 const int pixelHeight = 1000;

 const int iterations = 100;

 Progress<double> progressReporter;

 public MandelbrotProgressPage()

 {

 InitializeComponent();

 progressReporter = new Progress<double>((double value) =>

 {

 progressBar.Progress = value;

 });

 }

 async void OnCalculateButtonClicked(object sender, EventArgs args)

 {

 // Configure the UI for a background process.

 calculateButton.IsEnabled = false;

 // Render the Mandelbrot set on a bitmap.

 BmpMaker bmpMaker = await CalculateMandelbrotAsync(progressReporter);

 image.Source = bmpMaker.Generate();

 }

 Task<BmpMaker> CalculateMandelbrotAsync(IProgress<double> progress)

 {

 return Task.Run<BmpMaker>(() =>

 {

 BmpMaker bmpMaker = new BmpMaker(pixelWidth, pixelHeight);

 for (int row = 0; row < pixelHeight; row++)

 {

 double y = center.Imaginary - size.Height / 2 + row * size.Height / pixelHeight;

Chapter 20 Async and file I/O 675

 // Report the progress.

 progress.Report((double)row / pixelHeight);

 for (int col = 0; col < pixelWidth; col++)

 {

 double x = center.Real - size.Width / 2 + col * size.Width / pixelWidth;

 Complex c = new Complex(x, y);

 Complex z = 0;

 int iteration = 0;

 bool isMandelbrotSet = false;

 if ((c - new Complex(-1, 0)).MagnitudeSquared < 1.0 / 16)

 {

 isMandelbrotSet = true;

 }

 else

 {

 do

 {

 z = z * z + c;

 iteration++;

 }

 while (iteration < iterations && z.MagnitudeSquared < 4);

 isMandelbrotSet = iteration == iterations;

 }

 bmpMaker.SetPixel(row, col, isMandelbrotSet ? Color.Black : Color.White);

 }

 }

 return bmpMaker;

 });

 }

}

The asynchronous method reports its progress with every new row:

progress.Report((double)row / pixelHeight);

Watch out: You don’t want to report progress so frequently that you slow down the method! A hun-

dred calls to the Report method during the whole operation is plenty, and you can probably reduce

that number considerably before the ProgressBar begins looking jittery.

If you pay close attention to the ProgressBar in MandelbrotProgress, you’ll see that it moves fast

at the start and then slows down. The problem area is the large cardioid—and to a lesser extent, the

circle to its left—that makes up the bulk of the Mandelbrot set. For points within these areas, the recur-

sive calculation must run to the maximum iteration count before the point is identified as a member of

the set. This new method attempts to reduce the work somewhat by detecting when the point is within

the circle. The center of this circle is the complex point –1, and the radius is 1/4:

if ((c - new Complex(-1, 0)).MagnitudeSquared < 1.0 / 16)

{

 isMandelbrotSet = true;

Chapter 20 Async and file I/O 676

}

But the cardioid is a more complex object (although that too can be identified, as the next version of

the program demonstrates).

When the asynchronous method creates and returns that BmpMaker object, the code to obtain that

object and set the bitmap to the Image object reduces to just two statements:

BmpMaker bmpMaker = await CalculateMandelbrotAsync(progressReporter);

image.Source = bmpMaker.Generate();

But if two statements are too many, keep in mind that await is pretty much just an ordinary operator

and can be part of a more complex statement:

image.Source = (await CalculateMandelbrotAsync(progressReporter)).Generate();

Cancelling the job
The two Mandelbrot programs shown so far exist for the sole purpose of generating a single image, so

it’s unlikely that you would want to cancel that job once it’s started. However, in the general case, you’ll

want to provide a facility for the user to bail out of lengthy background jobs.

Although you can probably put together a little cancellation system of your own, the Sys-

tem.Threading namespace already has you covered with a class named CancellationToken-

Source and a structure named CancellationToken.

Here’s how it works:

A program creates a CancellationTokenSource for use with a particular asynchronous method.

The CancellationTokenSource class defines a property named Token that returns a Cancella-

tionToken. This CancellationToken value is passed to the asynchronous method. The asynchro-

nous method periodically calls the IsCancellationRequested method of the CancellationToken.

This method usually returns false.

When the program wants to cancel the asynchronous operation (probably in response to some user

input), it calls the Cancel method of the CancellationTokenSource. The next time the asynchro-

nous method calls the IsCancellationRequested method of the CancellationToken, the method

returns true because a cancellation has been requested. The asynchronous method can choose how

to stop running, perhaps with a simple return statement.

Usually, however, a different approach is taken. Rather than calling the IsCancellationRe-

quested method of CancellationToken, the asynchronous method can instead simply call the

ThrowIfCancellationRequested method. If a cancellation has been requested, the asynchronous

method stops executing by raising an OperationCanceledException.

This means that the await operator must be part of a try block, but as you’ve seen, this is gener-

ally the case when working with files, so it doesn’t add much additional code, and the program can

process a cancellation as simply another form of exception.

Chapter 20 Async and file I/O 677

The MandelbrotCancellation program demonstrates this technique. The XAML file now has a sec-

ond button, labeled “Cancel”, which is initially disabled:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="MandelbrotCancellation.MandelbrotCancellationPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <Grid VerticalOptions="FillAndExpand">

 <ContentView Padding="10, 0"

 VerticalOptions="Center">

 <ProgressBar x:Name="progressBar" />

 </ContentView>

 <Image x:Name="image" />

 </Grid>

 <Grid>

 <Button x:Name="calculateButton"

 Grid.Column="0"

 Text="Calculate"

 FontSize="Large"

 HorizontalOptions="Center"

 Clicked="OnCalculateButtonClicked" />

 <Button x:Name="cancelButton"

 Grid.Column="1"

 Text="Cancel"

 FontSize="Large"

 IsEnabled="False"

 HorizontalOptions="Center"

 Clicked="OnCancelButtonClicked" />

 </Grid>

 </StackLayout>

</ContentPage>

The code-behind file now has a more extensive OnCalculateButtonClicked method. It begins

by disabling the Calculate button and enabling the Cancel button. It creates a new Cancellation-

TokenSource object and passes the Token property to CalculateMandelbrotAsync. The OnCan-

celButtonClicked method is responsible for calling Cancel on the CancellationTokenSource

object. The CalculateMandelbrotAsync method calls the ThrowIfCancellationRequested

method at the same rate that it reports progress. The exception is caught by the OnCalculateBut-

tonClicked method, which responds by reenabling the Calculate button for another try:

public partial class MandelbrotCancellationPage : ContentPage

{

 static readonly Complex center = new Complex(-0.75, 0);

 static readonly Size size = new Size(2.5, 2.5);

 const int pixelWidth = 1000;

Chapter 20 Async and file I/O 678

 const int pixelHeight = 1000;

 const int iterations = 100;

 Progress<double> progressReporter;

 CancellationTokenSource cancelTokenSource;

 public MandelbrotCancellationPage()

 {

 InitializeComponent();

 progressReporter = new Progress<double>((double value) =>

 {

 progressBar.Progress = value;

 });

 }

 async void OnCalculateButtonClicked(object sender, EventArgs args)

 {

 // Configure the UI for a background process.

 calculateButton.IsEnabled = false;

 cancelButton.IsEnabled = true;

 cancelTokenSource = new CancellationTokenSource();

 try

 {

 // Render the Mandelbrot set on a bitmap.

 BmpMaker bmpMaker = await CalculateMandelbrotAsync(progressReporter,

 cancelTokenSource.Token);

 image.Source = bmpMaker.Generate();

 }

 catch (OperationCanceledException)

 {

 calculateButton.IsEnabled = true;

 progressBar.Progress = 0;

 }

 catch (Exception)

 {

 // Shouldn't occur in this case.

 }

 cancelButton.IsEnabled = false;

 }

 void OnCancelButtonClicked(object sender, EventArgs args)

 {

 cancelTokenSource.Cancel();

 }

 Task<BmpMaker> CalculateMandelbrotAsync(IProgress<double> progress,

 CancellationToken cancelToken)

 {

 return Task.Run<BmpMaker>(() =>

 {

Chapter 20 Async and file I/O 679

 BmpMaker bmpMaker = new BmpMaker(pixelWidth, pixelHeight);

 for (int row = 0; row < pixelHeight; row++)

 {

 double y = center.Imaginary - size.Height / 2 + row * size.Height / pixelHeight;

 // Report the progress.

 progress.Report((double)row / pixelHeight);

 // Possibly cancel.

 cancelToken.ThrowIfCancellationRequested();

 for (int col = 0; col < pixelWidth; col++)

 {

 double x = center.Real - size.Width / 2 + col * size.Width / pixelWidth;

 Complex c = new Complex(x, y);

 Complex z = 0;

 int iteration = 0;

 bool isMandelbrotSet = false;

 if ((c - new Complex(-1, 0)).MagnitudeSquared < 1.0 / 16)

 {

 isMandelbrotSet = true;

 }

 // http://www.reenigne.org/blog/algorithm-for-mandelbrot-cardioid/

 else if (c.MagnitudeSquared * (8 * c.MagnitudeSquared - 3) <

 3.0 / 32 - c.Real)

 {

 isMandelbrotSet = true;

 }

 else

 {

 do

 {

 z = z * z + c;

 iteration++;

 }

 while (iteration < iterations && z.MagnitudeSquared < 4);

 isMandelbrotSet = iteration == iterations;

 }

 bmpMaker.SetPixel(row, col, isMandelbrotSet ? Color.Black : Color.White);

 }

 }

 return bmpMaker;

 }, cancelToken);

 }

}

The CancellationToken is also passed as the second argument to Task.Run. This isn’t required,

but it allows the Task.Run method to skip a lot of work if cancellation has already been requested be-

fore it even gets started.

Chapter 20 Async and file I/O 680

Also notice that the code now skips the large cardioid. A comment references a web page that de-

rives the formula in case you want to check the math.

An MVVM Mandelbrot
Although the black-and-white Mandelbrot set is the classic image, most Mandelbrot programs color

pixels that are not in the Mandelbrot set based on the number of iterations required for that determi-

nation. The penultimate program in this chapter is called MandelbrotXF—the XF prefix stands for

Xamarin.Forms—and colors the pixels in that way. The program also allows zooming in on specific lo-

cations. It is a characteristic of a Mandelbrot set that the image remains interesting no matter how far

you zoom. Unfortunately, there is a practical limit to zooming based on the resolution of double-

precision floating-point numbers.

The program is architected using MVVM principles, although after seeing the somewhat odd user

interface—and how the ViewModel deals with that user interface—you might question the wisdom of

that decision.

The odd user interface of MandelbrotXF results from a decision to avoid any platform-specific

code. At the time this program was originally written, Xamarin.Forms did not support touch operations

such as dragging and pinching that might have been helpful in zooming into a particular location. In-

stead, the program’s entire user interface is implemented with two Slider elements, two Stepper

elements, two Button elements, a ProgessBar, and visuals implemented with BoxView.

When you first run the program, here’s what you’ll see:

Chapter 20 Async and file I/O 681

The white crosshairs—which don’t show up against the white background of the blank iOS and Win-

dows 10 Mobile screens—fade out over the course of 10 seconds so that they won’t obscure the pretty

pictures that you’ll soon be admiring, but you can bring them back by manipulating either of the slid-

ers or the steppers.

But the first thing you’ll want to do is press the Go button. The button is replaced with a Cancel

button and the ProgressBar indicates progress. When it’s finished, you’ll see a colored Mandelbrot

set:

It finishes quickly because the maximum iteration count (indicated by the bottom Stepper labeled

loop) is only 2 to the third power, or 8. As a result, the outline of the black Mandelbrot set is not nearly

as sharp as the earlier programs. Many more points are flagged as being a member of the set than

would be with a higher maximum iteration count. You can increase that iteration count by powers of 2.

Here’s a sharper image with a maximum iteration count of 64:

Chapter 20 Async and file I/O 682

The two Slider views allow you to select a new center, which is displayed as a complex number

right below the sliders. The first Stepper element (labeled zoom) allows you to select a magnification

factor, also in powers of 2. As you manipulate these three elements, you’ll see a box with crosshairs

constructed with six thin BoxView elements. That box marks the area that will be magnified the next

time you press the Go button:

Now press the Go button again and wait. Now that previously boxed area fills the bitmap:

Chapter 20 Async and file I/O 683

After the new image is calculated, the crosshairs are recentered, and you can reposition the center

and zoom in again, and again, and again.

However, generally the more you zoom in, the greater the maximum iterations you’ll need to see all

the detail. For each device, the image in the previous screenshots acquires visibly more detail with four

times as many iterations:

Chapter 20 Async and file I/O 684

It is a characteristic of the Mandelbrot set that you can just keep zooming in as much as you want

and you’ll still see just as much detail. However, generally you will need to keep increasing the maxi-

mum iteration count as well, and by the time you hit a magnification factor of 2 to the forty-eighth

power or so, you’ve hit a ceiling involving the resolution of double-precision floating-point numbers.

Adjacent pixels are no longer associated with distinct complex numbers, and the image begins looking

blocky:

Chapter 20 Async and file I/O 685

That’s not an easy obstacle to transcend. There exist implementations of variable-precision floating-

point numbers, but because they are not directly handled by the computer’s math coprocessor, calcu-

lations involving these numbers are necessarily much slower than float or double types, and it’s

likely you’re not going to want the Mandelbrot calculation to go any slower.

The MandelbrotXF program has both a ViewModel and an underlying Model. The Model does the

actual number crunching and returns an object of type BitmapInfo, which indicates a pixel width and

height and an array of integers. The size of the integer array is the product of the pixel width and

height, and the elements of the array are iteration counts. A value of –1 indicates a member of the

Mandelbrot set:

namespace MandelbrotXF

{

 class BitmapInfo

 {

 public BitmapInfo(int pixelWidth, int pixelHeight, int[] iterationCounts)

 {

 PixelWidth = pixelWidth;

 PixelHeight = pixelHeight;

 IterationCounts = iterationCounts;

 }

 public int PixelWidth { private set; get; }

 public int PixelHeight { private set; get; }

 public int[] IterationCounts { private set; get; }

 }

}

The MandelbrotModel class contains a single asynchronous method. Aside from the IProgress

object, all the arguments are value types, so there is no danger of any argument changing while the

calculation is in progress:

namespace MandelbrotXF

{

 class MandelbrotModel

 {

 public Task<BitmapInfo> CalculateAsync(Complex Center,

 double width, double height,

 int pixelWidth, int pixelHeight,

 int iterations,

 IProgress<double> progress,

 CancellationToken cancelToken)

 {

 return Task.Run(() =>

 {

 int[] iterationCounts = new int[pixelWidth * pixelHeight];

 int index = 0;

 for (int row = 0; row < pixelHeight; row++)

 {

Chapter 20 Async and file I/O 686

 progress.Report((double)row / pixelHeight);

 cancelToken.ThrowIfCancellationRequested();

 double y = Center.Imaginary - height / 2 + row * height / pixelHeight;

 for (int col = 0; col < pixelWidth; col++)

 {

 double x = Center.Real - width / 2 + col * width / pixelWidth;

 Complex c = new Complex(x, y);

 if ((c - new Complex(-1, 0)).MagnitudeSquared < 1.0 / 16)

 {

 iterationCounts[index++] = -1;

 }

 // http://www.reenigne.org/blog/algorithm-for-mandelbrot-cardioid/

 else if (c.MagnitudeSquared * (8 * c.MagnitudeSquared - 3) <

 3.0 / 32 - c.Real)

 {

 iterationCounts[index++] = -1;

 }

 else

 {

 Complex z = 0;

 int iteration = 0;

 do

 {

 z = z * z + c;

 iteration++;

 }

 while (iteration < iterations && z.MagnitudeSquared < 4);

 if (iteration == iterations)

 {

 iterationCounts[index++] = -1;

 }

 else

 {

 iterationCounts[index++] = iteration;

 }

 }

 }

 }

 return new BitmapInfo(pixelWidth, pixelHeight, iterationCounts);

 }, cancelToken);

 }

 }

}

This CalculateAsync method is called only from the ViewModel. The ViewModel is also intended

to provide data-binding sources for the XAML file and to assist the code-behind file in performing

those jobs that the XAML data bindings cannot handle. (Drawing the crosshairs and magnification box

is a job for that code-behind file.)

Chapter 20 Async and file I/O 687

For this reason, the MandelbrotViewModel class has many properties, but probably not the same

properties you’d define if you weren’t thinking about the user interface. The CurrentCenter property

is the complex number for the center of the image currently displayed by the program, and the Cur-

rentMagnification also applies to that image. But the TargetMagnification is bound to the cur-

rent setting of the Stepper, which will apply to the next calculated image. The RealOffset and Im-

aginaryOffset properties are bound to the two Slider elements and can range from 0 to 1. From

the CurrentCenter, CurrentMagnification, RealOffset, and ImaginaryOffset properties, the

ViewModel can calculate the TargetCenter property. This is the center for the next calculated image.

As you’ll see, that TargetCenter property is used to display the complex number below the two

sliders:

namespace MandelbrotXF

{

 class MandelbrotViewModel : ViewModelBase

 {

 // Set via constructor arguments.

 readonly double baseWidth;

 readonly double baseHeight;

 // Backing fields for properties.

 Complex currentCenter, targetCenter;

 int pixelWidth, pixelHeight;

 double currentMagnification, targetMagnification;

 int iterations;

 double realOffset, imaginaryOffset;

 bool isBusy;

 double progress;

 BitmapInfo bitmapInfo;

 public MandelbrotViewModel(double baseWidth, double baseHeight)

 {

 this.baseWidth = baseWidth;

 this.baseHeight = baseHeight;

 // Create MandelbrotModel object.

 MandelbrotModel model = new MandelbrotModel();

 // Progress reporter

 Progress<double> progressReporter = new Progress<double>((double progress) =>

 {

 Progress = progress;

 });

 CancellationTokenSource cancelTokenSource = null;

 // Define CalculateCommand and CancelCommand.

 CalculateCommand = new Command(

 execute: async () =>

 {

 // Disable this button and enable Cancel button.

 IsBusy = true;

 ((Command)CalculateCommand).ChangeCanExecute();

Chapter 20 Async and file I/O 688

 ((Command)CancelCommand).ChangeCanExecute();

 // Create CancellationToken.

 cancelTokenSource = new CancellationTokenSource();

 CancellationToken cancelToken = cancelTokenSource.Token;

 try

 {

 // Perform the calculation.

 BitmapInfo = await model.CalculateAsync(TargetCenter,

 baseWidth / TargetMagnification,

 baseHeight / TargetMagnification,

 PixelWidth, PixelHeight,

 Iterations,

 progressReporter,

 cancelToken);

 // Processing only for a successful completion.

 CurrentCenter = TargetCenter;

 CurrentMagnification = TargetMagnification;

 RealOffset = 0.5;

 ImaginaryOffset = 0.5;

 }

 catch (OperationCanceledException)

 {

 // Operation cancelled!

 }

 catch

 {

 // Another type of exception? This should not occur.

 }

 // Processing regardless of success or cancellation.

 Progress = 0;

 IsBusy = false;

 // Disable Cancel button and enable this button.

 ((Command)CalculateCommand).ChangeCanExecute();

 ((Command)CancelCommand).ChangeCanExecute();

 },

 canExecute: () =>

 {

 return !IsBusy;

 });

 CancelCommand = new Command(

 execute: () =>

 {

 cancelTokenSource.Cancel();

 },

 canExecute: () =>

 {

 return IsBusy;

 });

Chapter 20 Async and file I/O 689

 }

 public int PixelWidth

 {

 set { SetProperty(ref pixelWidth, value); }

 get { return pixelWidth; }

 }

 public int PixelHeight

 {

 set { SetProperty(ref pixelHeight, value); }

 get { return pixelHeight; }

 }

 public Complex CurrentCenter

 {

 set

 {

 if (SetProperty(ref currentCenter, value))

 CalculateTargetCenter();

 }

 get { return currentCenter; }

 }

 public Complex TargetCenter

 {

 private set { SetProperty(ref targetCenter, value); }

 get { return targetCenter; }

 }

 public double CurrentMagnification

 {

 set { SetProperty(ref currentMagnification, value); }

 get { return currentMagnification; }

 }

 public double TargetMagnification

 {

 set { SetProperty(ref targetMagnification, value); }

 get { return targetMagnification; }

 }

 public int Iterations

 {

 set { SetProperty(ref iterations, value); }

 get { return iterations; }

 }

 // These two properties range from 0 to 1.

 // They indicate a new center relative to the

 // current width and height, which is the baseWidth

 // and baseHeight divided by CurrentMagnification.

 public double RealOffset

 {

Chapter 20 Async and file I/O 690

 set

 {

 if (SetProperty(ref realOffset, value))

 CalculateTargetCenter();

 }

 get { return realOffset; }

 }

 public double ImaginaryOffset

 {

 set

 {

 if (SetProperty(ref imaginaryOffset, value))

 CalculateTargetCenter();

 }

 get { return imaginaryOffset; }

 }

 void CalculateTargetCenter()

 {

 double width = baseWidth / CurrentMagnification;

 double height = baseHeight / CurrentMagnification;

 TargetCenter = new Complex(CurrentCenter.Real + (RealOffset - 0.5) * width,

 CurrentCenter.Imaginary + (ImaginaryOffset - 0.5) *

 height);

 }

 public bool IsBusy

 {

 private set { SetProperty(ref isBusy, value); }

 get { return isBusy; }

 }

 public double Progress

 {

 private set { SetProperty(ref progress, value); }

 get { return progress; }

 }

 public BitmapInfo BitmapInfo

 {

 private set { SetProperty(ref bitmapInfo, value); }

 get { return bitmapInfo; }

 }

 public ICommand CalculateCommand { private set; get; }

 public ICommand CancelCommand { private set; get; }

 }

}

MandelbrotViewModel also defines two properties of type ICommand for the Calculate and Can-

cel buttons, a Progress property, and an IsBusy property. As you’ll see, the IsBusy property is used

Chapter 20 Async and file I/O 691

to display one of those two buttons and hide the other and to disable the rest of the user interface

during the calculations. The two ICommand properties are implemented with lambda functions in the

class’s constructor.

The data bindings in the XAML file to the properties in MandelbrotViewModel require two new

binding converters in the Xamarin.FormsBook.Toolkit library. The first simply negates a bool value:

namespace Xamarin.FormsBook.Toolkit

{

 public class BooleanNegationConverter : IValueConverter

 {

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return !(bool)value;

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return !(bool)value;

 }

 }

}

This is used in conjunction with the IsBusy property of the ViewModel. When IsBusy is true, the

IsEnabled properties of several elements and the IsVisible property of the Go button need to be

set to false.

Both Stepper elements actually control an exponent of a value in the ViewModel. A Stepper value

of 8, for example, corresponds to an Iterations or TargetMagnification value of 256. That con-

version requires a base-2 logarithm converter:

namespace Xamarin.FormsBook.Toolkit

{

 public class BaseTwoLogConverter : IValueConverter

 {

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 if (value is int)

 {

 return Math.Log((int)value) / Math.Log(2);

 }

 return Math.Log((double)value) / Math.Log(2);

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 double returnValue = Math.Pow(2, (double)value);

 if (targetType == typeof(int))

Chapter 20 Async and file I/O 692

 {

 return (int) returnValue;

 }

 return returnValue;

 }

 }

}

Here’s the XAML file, with bindings to the Progress, RealOffset, ImaginaryOffset, Tar-

getCenter, TargetMagnification, Iterations, IsBusy, CalculateCommand, and CancelCom-

mand properties of the ViewModel:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="MandelbrotXF.MandelbrotXFPage"

 SizeChanged="OnPageSizeChanged">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.Resources>

 <ResourceDictionary>

 <toolkit:BooleanNegationConverter x:Key="negate" />

 <toolkit:BaseTwoLogConverter x:Key="base2log" />

 </ResourceDictionary>

 </ContentPage.Resources>

 <Grid x:Name="mainGrid">

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="0" />

 </Grid.ColumnDefinitions>

 <!-- Image for determining pixels per unit. -->

 <Image x:Name="testImage"

 Grid.Row="0" Grid.Column="0"

 Opacity="0"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 <!-- Image for Mandelbrot Set. -->

 <Image x:Name="image"

 Grid.Row="0" Grid.Column="0"

 HorizontalOptions="FillAndExpand"

 VerticalOptions="FillAndExpand"

 SizeChanged="OnImageSizeChanged" />

Chapter 20 Async and file I/O 693

 <AbsoluteLayout x:Name="crossHairLayout"

 Grid.Row="0" Grid.Column="0"

 HorizontalOptions="Center"

 VerticalOptions="Center"

 SizeChanged="OnCrossHairLayoutSizeChanged">

 <AbsoluteLayout.Resources>

 <ResourceDictionary>

 <Style TargetType="BoxView">

 <Setter Property="Color" Value="White" />

 <Setter Property="AbsoluteLayout.LayoutBounds" Value="0,0,0,0" />

 </Style>

 </ResourceDictionary>

 </AbsoluteLayout.Resources>

 <BoxView x:Name="realCrossHair" />

 <BoxView x:Name="imagCrossHair" />

 <BoxView x:Name="topBox" />

 <BoxView x:Name="bottomBox" />

 <BoxView x:Name="leftBox" />

 <BoxView x:Name="rightBox" />

 </AbsoluteLayout>

 <StackLayout x:Name="controlPanelStack"

 Grid.Row="1" Grid.Column="0"

 Padding="10">

 <ProgressBar Progress="{Binding Progress}"

 VerticalOptions="CenterAndExpand" />

 <StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding RealOffset, Mode=TwoWay}"

 IsEnabled="{Binding IsBusy, Converter={StaticResource negate}}" />

 <Slider Value="{Binding ImaginaryOffset, Mode=TwoWay}"

 IsEnabled="{Binding IsBusy, Converter={StaticResource negate}}" />

 <Label Text="{Binding TargetCenter, StringFormat='{0}'}"

 FontSize="Small"

 HorizontalTextAlignment="Center" />

 </StackLayout>

 <Grid VerticalOptions="CenterAndExpand">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

Chapter 20 Async and file I/O 694

 <!-- Magnification factor stepper and display. -->

 <Stepper x:Name="magnificationStepper"

 Grid.Row="0" Grid.Column="0"

 Value="{Binding TargetMagnification,

 Converter={StaticResource base2log}}"

 IsEnabled="{Binding IsBusy, Converter={StaticResource negate}}"

 VerticalOptions="Center" />

 <StackLayout Grid.Row="0" Grid.Column="1"

 Orientation="Horizontal"

 Spacing="0"

 VerticalOptions="Start">

 <Label Text="zoom 2"

 FontSize="Medium" />

 <Label Text="{Binding Source={x:Reference magnificationStepper},

 Path=Value,

 StringFormat='{0}'}"

 FontSize="Micro" />

 </StackLayout>

 <!-- Iterations factor stepper and display. -->

 <Stepper x:Name="iterationsStepper"

 Grid.Row="1" Grid.Column="0"

 Value="{Binding Iterations, Converter={StaticResource base2log}}"

 IsEnabled="{Binding IsBusy, Converter={StaticResource negate}}"

 VerticalOptions="Center" />

 <StackLayout Grid.Row="1" Grid.Column="1"

 Orientation="Horizontal"

 Spacing="0"

 VerticalOptions="End">

 <Label Text="loop 2"

 FontSize="Medium" />

 <Label Text="{Binding Source={x:Reference iterationsStepper},

 Path=Value,

 StringFormat='{0}'}"

 FontSize="Micro" />

 </StackLayout>

 <!-- Go / Cancel buttons. -->

 <Grid Grid.Row="0" Grid.Column="1" Grid.RowSpan="2"

 HorizontalOptions="End"

 VerticalOptions="Center">

 <Button Text="Go"

 Command="{Binding CalculateCommand}"

 IsVisible="{Binding IsBusy, Converter={StaticResource negate}}" />

 <Button Text="Cancel"

 Command="{Binding CancelCommand}"

 IsVisible="{Binding IsBusy}" />

 </Grid>

 </Grid>

 </StackLayout>

Chapter 20 Async and file I/O 695

 </Grid>

</ContentPage>

This XAML file only installs three event handlers, and they are all SizeChanged handlers.

The first SizeChanged handler is on the page itself. This handler is used by the code-behind file to

adapt mainGrid and its children for portrait or landscape mode using techniques you’ve seen in previ-

ous samples.

The second SizeChanged handler is on the Image element. The code-behind file uses this to size

the AbsoluteLayout that displays the crosshairs and magnification box. This AbsoluteLayout must

be made the same size as the bitmap displayed by the Image under the assumption that the Image

will display a square bitmap.

The third SizeChanged handler is on that AbsoluteLayout, so the crosshairs and magnification

box can be redrawn for a change in size.

The MandelbrotXF program also performs a little trick of sorts to ensure that the bitmap contains

the optimum number of pixels, which happens when there is a one-to-one mapping between the pix-

els of the bitmap and the pixels of the display. The XAML file contains a second Image element named

testImage. This Image is invisible because the Opacity is set to zero, and it is horizontally and verti-

cally centered, which means that it will be displayed with a one-to-one pixel mapping. The code-be-

hind file creates a 120-pixel square bitmap that is set to this Image. The resultant size of the Image lets

the program know how many pixels there are to the device-independent unit, and it can use that to

calculate an optimum pixel size for the Mandelbrot bitmap. (Unfortunately it doesn’t work for the Win-

dows Runtime platforms.)

Here’s roughly the first half of the code-behind file for MandelbrotXFPage, showing mostly the

instantiation of the MandelbrotViewModel class and the interaction of these SizeChanged handlers:

namespace MandelbrotXF

{

 public partial class MandelbrotXFPage : ContentPage

 {

 MandelbrotViewModel mandelbrotViewModel;

 double pixelsPerUnit = 1;

 public MandelbrotXFPage()

 {

 InitializeComponent();

 // Instantiate ViewModel and get saved values.

 mandelbrotViewModel = new MandelbrotViewModel(2.5, 2.5)

 {

 PixelWidth = 1000,

 PixelHeight = 1000,

 CurrentCenter = new Complex(GetProperty("CenterReal", -0.75),

 GetProperty("CenterImaginary", 0.0)),

 CurrentMagnification = GetProperty("Magnification", 1.0),

 TargetMagnification = GetProperty("Magnification", 1.0),

Chapter 20 Async and file I/O 696

 Iterations = GetProperty("Iterations", 8),

 RealOffset = 0.5,

 ImaginaryOffset = 0.5

 };

 // Set BindingContext on page.

 BindingContext = mandelbrotViewModel;

 // Set PropertyChanged handler on ViewModel for "manual" processing.

 mandelbrotViewModel.PropertyChanged += OnMandelbrotViewModelPropertyChanged;

 // Create test image to obtain pixels per device-independent unit.

 BmpMaker bmpMaker = new BmpMaker(120, 120);

 testImage.SizeChanged += (sender, args) =>

 {

 pixelsPerUnit = bmpMaker.Width / testImage.Width;

 SetPixelWidthAndHeight();

 };

 testImage.Source = bmpMaker.Generate();

 // Gradually reduce opacity of crosshairs.

 Device.StartTimer(TimeSpan.FromMilliseconds(100), () =>

 {

 realCrossHair.Opacity -= 0.01;

 imagCrossHair.Opacity -= 0.01;

 return true;

 });

 }

 // Method for accessing Properties dictionary if key is not yet present.

 T GetProperty<T>(string key, T defaultValue)

 {

 IDictionary<string, object> properties = Application.Current.Properties;

 if (properties.ContainsKey(key))

 {

 return (T)properties[key];

 }

 return defaultValue;

 }

 // Switch between portrait and landscape mode.

 void OnPageSizeChanged(object sender, EventArgs args)

 {

 if (Width == -1 || Height == -1)

 return;

 // Portrait mode.

 if (Width < Height)

 {

 mainGrid.RowDefinitions[1].Height = GridLength.Auto;

 mainGrid.ColumnDefinitions[1].Width = new GridLength(0, GridUnitType.Absolute);

 Grid.SetRow(controlPanelStack, 1);

Chapter 20 Async and file I/O 697

 Grid.SetColumn(controlPanelStack, 0);

 }

 // Landscape mode.

 else

 {

 mainGrid.RowDefinitions[1].Height = new GridLength(0, GridUnitType.Absolute);

 mainGrid.ColumnDefinitions[1].Width = new GridLength(1, GridUnitType.Star);

 Grid.SetRow(controlPanelStack, 0);

 Grid.SetColumn(controlPanelStack, 1);

 }

 }

 void OnImageSizeChanged(object sender, EventArgs args)

 {

 // Assure that crosshair layout is same size as Image.

 double size = Math.Min(image.Width, image.Height);

 crossHairLayout.WidthRequest = size;

 crossHairLayout.HeightRequest = size;

 // Calculate the pixel size of the Image element.

 SetPixelWidthAndHeight();

 }

 // Sets the Mandelbrot bitmap to optimum pixel width and height.

 void SetPixelWidthAndHeight()

 {

 int pixels = (int)(pixelsPerUnit * Math.Min(image.Width, image.Height));

 mandelbrotViewModel.PixelWidth = pixels;

 mandelbrotViewModel.PixelHeight = pixels;

 }

 // Redraw crosshairs if the crosshair layout changes size.

 void OnCrossHairLayoutSizeChanged(object sender, EventArgs args)

 {

 SetCrossHairs();

 }

 …

 }

}

Rather than attach a bunch of event handlers to user-interface elements in the XAML file, the con-

structor of the code-behind file instead attaches a PropertyChanged handler to the Mandelbrot-

ViewModel instance. Changes to several properties require that the crosshairs and sizing box be re-

drawn, and any change to any property brings the crosshairs back into view:

namespace MandelbrotXF

{

 {

 …

 async void OnMandelbrotViewModelPropertyChanged(object sender,

 PropertyChangedEventArgs args)

Chapter 20 Async and file I/O 698

 {

 // Set opacity back to 1.

 realCrossHair.Opacity = 1;

 imagCrossHair.Opacity = 1;

 switch (args.PropertyName)

 {

 case "RealOffset":

 case "ImaginaryOffset":

 case "CurrentMagnification":

 case "TargetMagnification":

 // Redraw crosshairs if these properties change

 SetCrossHairs();

 break;

 case "BitmapInfo":

 // Create bitmap based on the iteration counts.

 DisplayNewBitmap(mandelbrotViewModel.BitmapInfo);

 // Save properties for the next time program is run.

 IDictionary<string, object> properties = Application.Current.Properties;

 properties["CenterReal"] = mandelbrotViewModel.TargetCenter.Real;

 properties["CenterImaginary"] = mandelbrotViewModel.TargetCenter.Imaginary;

 properties["Magnification"] = mandelbrotViewModel.TargetMagnification;

 properties["Iterations"] = mandelbrotViewModel.Iterations;

 await Application.Current.SavePropertiesAsync();

 break;

 }

 }

 void SetCrossHairs()

 {

 // Size of the layout for the crosshairs and zoom box.

 Size layoutSize = new Size(crossHairLayout.Width, crossHairLayout.Height);

 // Fractional position of center of crosshair.

 double xCenter = mandelbrotViewModel.RealOffset;

 double yCenter = 1 - mandelbrotViewModel.ImaginaryOffset;

 // Calculate dimension of zoom box.

 double boxSize = mandelbrotViewModel.CurrentMagnification /

 mandelbrotViewModel.TargetMagnification;

 // Fractional positions of zoom box corners.

 double xLeft = xCenter - boxSize / 2;

 double xRight = xCenter + boxSize / 2;

 double yTop = yCenter - boxSize / 2;

 double yBottom = yCenter + boxSize / 2;

 // Set all the layout bounds.

 SetLayoutBounds(realCrossHair,

 new Rectangle(xCenter, yTop, 0, boxSize),

 layoutSize);

 SetLayoutBounds(imagCrossHair,

Chapter 20 Async and file I/O 699

 new Rectangle(xLeft, yCenter, boxSize, 0),

 layoutSize);

 SetLayoutBounds(topBox, new Rectangle(xLeft, yTop, boxSize, 0), layoutSize);

 SetLayoutBounds(bottomBox, new Rectangle(xLeft, yBottom, boxSize, 0), layoutSize);

 SetLayoutBounds(leftBox, new Rectangle(xLeft, yTop, 0, boxSize), layoutSize);

 SetLayoutBounds(rightBox, new Rectangle(xRight, yTop, 0, boxSize), layoutSize);

 }

 void SetLayoutBounds(View view, Rectangle fractionalRect, Size layoutSize)

 {

 if (layoutSize.Width == -1 || layoutSize.Height == -1)

 {

 AbsoluteLayout.SetLayoutBounds(view, new Rectangle());

 return;

 }

 const double thickness = 1;

 Rectangle absoluteRect = new Rectangle();

 // Horizontal lines.

 if (fractionalRect.Height == 0 && fractionalRect.Y > 0 && fractionalRect.Y < 1)

 {

 double xLeft = Math.Max(0, fractionalRect.Left);

 double xRight = Math.Min(1, fractionalRect.Right);

 absoluteRect = new Rectangle(layoutSize.Width * xLeft,

 layoutSize.Height * fractionalRect.Y,

 layoutSize.Width * (xRight - xLeft),

 thickness);

 }

 // Vertical lines.

 else if (fractionalRect.Width == 0 && fractionalRect.X > 0 && fractionalRect.X < 1)

 {

 double yTop = Math.Max(0, fractionalRect.Top);

 double yBottom = Math.Min(1, fractionalRect.Bottom);

 absoluteRect = new Rectangle(layoutSize.Width * fractionalRect.X,

 layoutSize.Height * yTop,

 thickness,

 layoutSize.Height * (yBottom - yTop));

 }

 AbsoluteLayout.SetLayoutBounds(view, absoluteRect);

 }

 …

 }

}

Early versions of the program attempted to use the proportional sizing and positioning facility of Ab-

soluteLayout for the six BoxView elements, but it became too difficult. Fractional values are passed

to the SetLayoutBounds method, but those are used to calculate coordinates based on the size of

the AbsoluteLayout.

Chapter 20 Async and file I/O 700

Because Models and ViewModels are supposed to be platform independent, neither Mandelbrot-

Model nor MandelbrotViewModel get involved with creating the actual bitmap. These classes express

the image as a BitmapInfo value, which is simply a pixel width and height and an array of integers

that correspond to iteration counts. Creating and displaying that bitmap mostly involves using Bmp-

Maker and applying a color scheme based on the iteration count:

namespace MandelbrotXF

{

 {

 …

 void DisplayNewBitmap(BitmapInfo bitmapInfo)

 {

 // Create the bitmap.

 BmpMaker bmpMaker = new BmpMaker(bitmapInfo.PixelWidth, bitmapInfo.PixelHeight);

 // Set the colors.

 int index = 0;

 for (int row = 0; row < bitmapInfo.PixelHeight; row++)

 {

 for (int col = 0; col < bitmapInfo.PixelWidth; col++)

 {

 int iterationCount = bitmapInfo.IterationCounts[index++];

 // In the Mandelbrot set: Color black.

 if (iterationCount == -1)

 {

 bmpMaker.SetPixel(row, col, 0, 0, 0);

 }

 // Not in the Mandelbrot set: Pick a color based on count.

 else

 {

 double proportion = (iterationCount / 32.0) % 1;

 if (proportion < 0.5)

 {

 bmpMaker.SetPixel(row, col, (int)(255 * (1 - 2 * proportion)),

 0,

 (int)(255 * 2 * proportion));

 }

 else

 {

 proportion = 2 * (proportion - 0.5);

 bmpMaker.SetPixel(row, col, 0,

 (int)(255 * proportion),

 (int)(255 * (1 - proportion)));

 }

 }

 }

 }

 image.Source = bmpMaker.Generate();

 }

 }

}

Chapter 20 Async and file I/O 701

Feel free to experiment with the color scheme. One easy alternative is to vary the hue of an HSL

color with the iteration count:

double hue = (iterationCount / 64.0) % 1;

bmpMaker.SetPixel(row, col, Color.FromHsla(hue, 1, 0.5));

Back to the web

Prior to this chapter, the only asynchronous code in this book involved web accesses using the only

reasonable class available for that purpose in the Portable Class Library, WebRequest. The WebRequest

class uses an older asynchronous protocol called the Asynchronous Programming Model or APM. APM

involves two methods, in the case of WebRequest, these are called BeginGetResponse and

EndGetResponse.

You can convert this pair of method calls into the Task-based Asynchronous Pattern (TAP) by using

the FromAsync method of TaskFactory, and the ApmToTap program demonstrates how. The pro-

gram uses a web access and ImageSource.FromStream to load a bitmap and display it. This tech-

nique was shown in Chapter 13 as an alternative to ImageSource.FromUri.

The XAML file contains an Image element awaiting a bitmap, an ActivityIndicator that runs

when the bitmap is loading, a Label to display a possible error message, and a Button to start the

download:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ApmToTap.ApmToTapPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <Grid VerticalOptions="FillAndExpand">

 <Label x:Name="errorLabel"

 HorizontalOptions="Center"

 VerticalOptions="Center" />

 <ActivityIndicator IsRunning="{Binding Source={x:Reference image},

 Path=IsLoading}" />

 <Image x:Name="image" />

 </Grid>

 <Button Text="Load Bitmap"

 HorizontalOptions="Center"

 Clicked="OnLoadButtonClicked" />

 </StackLayout>

</ContentPage>

Chapter 20 Async and file I/O 702

The code-behind file consolidates all the WebRequest code in an asynchronous method named

GetStreamAsync. After the TaskFactory and WebRequest objects are instantiated, the method

passes the BeginGetResponse and EndGetResponse methods to the FromAsync method of Task-

Factory, which then returns a WebResponse object from which a Stream is available:

public partial class ApmToTapPage : ContentPage

{

 public ApmToTapPage()

 {

 InitializeComponent();

 }

 async void OnLoadButtonClicked(object sender, EventArgs args)

 {

 try

 {

 Stream stream =

 await GetStreamAsync("https://developer.xamarin.com/demo/IMG_1996.JPG");

 image.Source = ImageSource.FromStream(() => stream);

 }

 catch (Exception exc)

 {

 errorLabel.Text = exc.Message;

 }

 }

 async Task<Stream> GetStreamAsync(string uri)

 {

 TaskFactory factory = new TaskFactory();

 WebRequest request = WebRequest.Create(uri);

 WebResponse response = await factory.FromAsync<WebResponse>(request.BeginGetResponse,

 request.EndGetResponse,

 null);

 return response.GetResponseStream();

 }

}

The Clicked handler for the Button can then get that Stream object by calling GetStreamAsync

with a URI. As usual, the code with the await operator is in a try block to catch any possible errors.

You can experiment a bit by deliberately misspelling the domain or filename to see what kind of errors

you get.

Another option for web accesses is a class named HttpClient in the System.Net.Http

namespace. This class is not available in the version of .NET included in the Portable Class Library in a

Xamarin.Forms solution, but Microsoft has made the class available as a NuGet package:

https://www.nuget.org/packages/Microsoft.Net.Http

From the NuGet manager in Visual Studio or Xamarin Studio, just search for “HttpClient”.

HttpClient is based on TAP. The asynchronous methods return Task and Task<T> objects, and

some of the methods also have CancellationToken arguments.

https://www.nuget.org/packages/Microsoft.Net.Http

Chapter 20 Async and file I/O 703

None of the methods report progress, however, which suggests that a first-rate modern class for

web accesses is still not yet available to Portable Class Libraries.

In the next chapter you’ll see many more uses of await and explore some other features of the

Task-based Asynchronous Pattern in connection with the exciting Xamarin.Forms implementation of

animation.

